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Abstract. This paper introduces AMAL, an operational automated and behavior-
based malware analysis and labeling (classification and clustering) system that
addresses many limitations and shortcomings of the existing academic and in-
dustrial systems. AMAL consists of two sub-systems, AutoMal and MaLabel.
AutoMal provides tools to collect low granularity behavioral artifacts that char-
acterize malware usage of the file system, memory, network, and registry, and
does that by running malware samples in virtualized environments. On the other
hand, MalL abel uses those artifacts to create representative features, use them for
building classifiers trained by manually-vetted training samples, and use those
classifiers to classify malware samples into families similar in behavior. AutoMal
also enables unsupervised learning, by implementing multiple clustering algo-
rithms for samples grouping. An evaluation of both AutoMal and MaLabel based
on medium-scale (4,000 samples) and large-scale datasets (more than 115,000
samples)—collected and analyzed by AutoMal over 13 months—show AMAL’s
effectiveness in accurately characterizing, classifying, and grouping malware sam-
ples. MaLabel achieves a precision of 99.5% and recall of 99.6% for certain fam-
ilies” classification, and more than 98% of precision and recall for unsupervised
clustering. Several benchmarks, costs estimates and measurements highlight and
support the merits and features of AMAL.
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1 Introduction

Malware classification and clustering is age old problem that many industrial and aca-
demic efforts have tackled in the past. There are two common and broad techniques
used for malware detection, that are also utilized for classification: signature based [24,
29, 16] and behavior based [19, 23, 31, 20, 28] techniques. Signature based techniques
use a common sequence of bytes that appear in the binary code of a malware family
to detect and identify malware samples. On the one hand, while signature-based tech-
niques are very fast since they do not require the effort to run the sample to identify it
(the whole decision is based on a static scan), their drawbacks is that they are not always
accurate, they can be thwarted using obfuscation, and they require a prior knowledge,
including a set of known signatures associated with the tested families.

The behavior-based approach uses artifacts the malware creates during execution.
While this approach to analysis and classification is more expensive since it requires
running the malware sample in order to obtain artifacts and features for behavior char-
acterization, they tend to have higher accuracy in characterizing malware samples due



to the availability of several heuristics to map behavior patterns into families. Also, be-
havior characterization is agnostic to the underlying code and can easily bypass code
obfuscation and polymorphism, relying on somewhat easier-to-interpret features.

Several academic studies used behavioral analysis for classification and labeling of
malware samples. The first work to do so is by Baily et al. [5], in which it is shown
that high-level features of the number of processes, files, registry records, and network
events, can be used for characterizing and classifying (multi-class clustering) malware
samples. However, the work falls short in many aspects. First, the technique makes
use of only high-level features, and misses explicit low-level and implicit features (the
authors leave that part for future work). Second, their work also relies on a small number
of samples for validation of the technique, and the only source for creating ground truth
for those samples was the side channel of antivirus labeling. Third, their technique is
limited to one clustering algorithm (hierarchical clustering with the Jaccard index for
similarity), and it is unclear how other algorithms perform for the same task. Last, their
technique is for clustering, and does not consider two-family classification problems,
so it is unclear how the features work with classification.

More recently, Bayer et al. [6] improved on the results in [5] in two ways. First,
the authors contributed the use of locality-sensitive hashing (LSH) for memory-efficient
clustering. Second, instead of using high-level behavior characteristics, the authors pro-
posed to use low OS-level features based on API-hooking for characterizing malware
samples. While effective, the technique has several shortcomings and limitations. First
of all, malware samples scan for installed drivers and uninstall or bypass the driver used
for kernel logging. More important, rootkits (like TDSS/TDL and ZeroAccess—both
families are studied in our evaluation), a popular set of families of malware, are usually
installed in the kernel and the kernel logger can be blind to all of their activities [27].
Rieck et al [23], uses the same API-hooking technique in [6] to collect artifacts and
use them for extracting features to characterize malware samples. However, their tech-
nique suffers from a low accuracy rates, perhaps due to their choice of features. While
they match the highest accuracy we achieve, our lowest accuracy of classification of a
malware family is 20% higher than the lowest accuracy in their system.

In this paper we introduce AMAL, an operational and large-scale behavior-based
solution for malware analysis and classification (both binary classification and clus-
tering) that addresses the shortcomings of the previous solutions. To achieve its end
goal, AMAL consists of two sub-systems, AutoMal and MaLabel. AutoMal builds on
the prior literature in characterizing malware samples by their memory, file system,
registry, and network behavior artifacts. Unlike [6], MaLabel uses low-granularity be-
havior artifacts that are even capable of characterizing differences between variants of
the same malware family. On the other hand, and given the wide-range of functionalities
of MalLabel, which includes binary classification and clustering, it incorporate several
techniques with several parameters and automatically chooses among the best of them
to produce the best results. To do that, and unlike the prior literature, MaLabel relies
on analyst-vetted and highly-accurate labels to train classifiers and assist in labeling
clusters grouped in unsupervised learning. Finally, the malware analysis and artifacts
collection part of AMAL (AutoMal) has been in production since early 2009, and it
enabled us to collect tens of millions, analyze several hundreds of thousands, and to
manually label several tens of thousands of malware samples—thus collecting in-house
intelligence beyond any related work in the literature.

The organization of the rest of this paper is as follows. In section 2, we review the
related literature. In section 3 we describe our system in details, including AutoMal, the



automatic malware analysis sub-system and MaLabel, the automated malware classifi-
cation sub-system. In section 4, we evaluate our system. In section 5 we outline some
of the future work and concluding remarks.

2 Related Work

There has been plenty of work in the recent literature on the use of machine learn-
ing algorithms for classifying malware samples [5, 24,23, 16,22, 21]. These works are
classified into two categories: signature based and behavior based techniques. Our work
belongs to the second category of these works, where we used several behavior charac-
teristics as features to classify the Zeus malware sample. Related to our work is the lit-
erature in [24, 19,23, 31]. In [19], the authors use behavior graphs matching to identify
and classify families of malware samples, at high cost of graph operations and gener-
ation. In [23,24], the authors follow a similar line of thoughts for extracting features,
and use SVM for classifying samples, but fall short in relying on a single algorithm and
using AV-generated labels (despite their pitfalls).

To the best of our knowledge, the closest work in the literature to ours is the work
in [5, 6,23] with the shortcomings highlighted earlier. Related to our use of network
features is the line of research on traffic analysis for malware and botnet detection, re-
ported in [15, 11, 12] and for the particular families of malware that use fast flux, which
is reported in [13, 18]. Related to our use of the DNS features for malware analysis are
the works in [3,4, 8]. None of those studies are concerned by behavior-based analysis
and classification of malware beyond the use of remotely collected network features for
inferring malicious activities and intent. Thus, although they share similarity with our
work in purpose, they are different from our work in the utilized techniques.

The use of machine learning techniques to automate classification of behavior of
codes and traffic are heavily studied in the literature. The reader can refer to recent
surveys in [26] and [25]. More related work is deferred to the technical report [17].

3 System Design

The ultimate goal of AMAL is to automatically analyze malware samples and classify
them into malware families based on their behavior. To that end, AMAL consists of two
components, AutoMal and MaLabel. AutoMal is a behavior-based automated malware
analysis system that uses memory and file system forensics, network activity logging,
and registry monitoring to profile malware samples. AutoMal also summarizes such
behavior into artifacts that are easy to interpret and use to characterize and represent
individual malware samples at lower level of abstraction.

On the other hand, MaLabel uses the artifacts generated by AutoMal to extract
unified representation, in the form of feature vectors, and builds a set of classifiers
and clustering mechanisms to group different samples based on their common and dis-
tinctive behavior characteristics. For binary classification, AutoMal builds classifiers
trained from highly-accurate, manually-inspected, analyst-vetted and labeled malware
samples. MaLabel then uses the classifier to accurately classify unlabeled samples into
similar groups, and to tell whether a given malware sample is of interest or not. Finally,
Mal.abel also provides the capability of clustering malware samples based on their be-
havior into multiple-classes, using hierarchical clustering with several settings to label
such clusters. To perform highly accurate labeling, MaLabel uses high-fidelity expert-
vetted training labels among other methods. With those overall system design goals and
objectives, we now proceed to describe the system flow of both AutoMal and MaLabel.



3.1 System Flow

AutoMal: Behavior-based Malware Analyzer AutoMal is an operational system used
by many customers, including large financial institutions, AV vendors, and internal
users (called analysts). AutoMal is intended for a variety of users and malware types,
thus it supports processing prioritization, multiple operating system and format selec-
tion, runtime variables and environment adjustment, among other options. The main
features of AutoMal are as follows. 1) Sample priority queue: Allows samples to have
processing priority based on submission source. 2) Run time variable: Allows submitter
to set run time for the sample in the virtual machine (VM) environment. 3) Environment
adjustment: Allows submitter to adjust operating system (OS) environment via script
interface before running a sample. 4) Multiply formats: Allows submission of various
formats like, EXE, DLL, PDF, DOC, XSL, PPT, HTML, and URL. 5) VMware-based:
Uses VMware as virtual environment. 6) OS selection: Allows submitter to select oper-
ating system for the VM, supports Windows XP, 7, and Vista with various Service Packs
(SP). Adding a new OS to AutoMal systems requires very little effort. 7) Lower Privi-
lege: Allows submitter to lower the OS privilege before running a sample. By default,
samples run as a privileged user in Windows XP. 8) Reboot option: Allows submitter
to reboot the system after a sample is executed to expose other activities of malicious
code that might be dormant.

AutoMal is a malware analysis system that comprises of several components, al-
lowing it to scale horizontally for parallel processing of multiple samples at a time.
An architectural design consists of a sample submitter, controller, workers (known as
virtual machines, or VMs), and back-end indexing and storage component (database).
Each component is described in the following:

Samples submitter. The submitter is responsible for feeding samples to AutoMal. The
samples are selected based on their priority in the processing queue. Given that Au-
toMal has multiple sources of sample input including, customer submissions, internal
submissions, and AV vendor samples, prioritization is used. Each of the samples are
ranked with different priority with customer submissions having the highest priority
followed by the internal submissions and finally the AV vendor feeds. When the system
is ideal, AutoMal’s controller fetches samples for processing from the process queue,
which has the highest priority.

Controller. The controller is the main component of AutoMal and it is responsible for
orchestrating the main process of the system. The controller fetches highest priority
samples from the queue with the smallest submission time (earliest submitted) and pro-
cesses them. The processing begins by the sample being copied into an available VM,
applying custom settings to the VM, if there are any, and running the sample. The con-
figuration for each VM is applied via a python agent installed on each VM allowing
the submitter to modify the VM environment as they see fit. For example if an analyst
identifies that a malware sample is not running because it checks a specific registry
key for environment artifact to detect the virtual environment, the analyst can submit
a script with the sample that will adjust the registry key so the malware sample fails
to detect the virtual environment and proceed to infect the system. The agent also de-
tects the type of file being submitted and runs it correctly. For example, if a DLL file
is submitted, the agent will install the DLL as a Windows Service and start the service
to identify the behavior of the sample. If a URL is submitted, the agent would launch
Internet Explorer browser and visit the URL. After the sample is run for the allotted
time, the controller pauses the VM and begins artifact collection. The controller runs
several tools to collect the following artifacts: 1) File system: files created, modified,



and deleted, file content, and file meta data. 2) Registry: registry created, modified, and
deleted, registry content, and registry meta data. 3) Network: DNS resolution, outgoing
and incoming content and meta data. 4) Volatile Memory: This artifact is only stored
for one week to run YARA signatures [2] (details are below) on the memory to identify
malware of interest.

The file system, registry, and network artifacts and their semantics are extracted
from the VMware Disk (VMDK) [30] and the packet capture (PCAP) file. The artifacts
and their semantics are then parsed and stored in the back-end database in the corre-
sponding tables for each artifact. The PCAP files are also stored in the database for
record keeping. The VMware machine also saves a copy of the virtual memory to disk
when paused. The controller then runs our own YARA signatures on the virtual memory
file to match any families that our analysts have identified, and tags them accordingly.
The virtual memory files are stored for 1 week on the AutoMal then discarded due to
the size of each memory dump. For example, if the malware sample is run in a VM that
has 512 MB of RAM then the stored virtual memory file would be 512 MB for that
sample plus the aforementioned artifacts. Storing virtual memory files indefinitely does
not scale hence we discard them after 1 week.

YARA signatures: YARA signatures are static signatures used to identify and classify
malware samples based on a sequence of known bytes in a specific malware family.
Our analysts have developed several YARA signatures based on their research and re-
verse engineering of malware families. Developing these signatures is time consuming
because they require reverse engineering several malware samples of a family and then
identifying a specific byte sequence that is common among all of them. A YARA sig-
nature is composed of 3 sections, meta section, string section, and condition section.

In our system we did not utilize memory signatures as a feature for classification or
clustering because not every sample in our system has those artifacts available. We only
store the memory artifacts for one week, hence we only have a window of one week
that covers a small set of malware processed in AutoMal. If we identify a feature of
importance in memory we can modify our system to log those features for future sam-
ples and we can add it to our feature set. We currently utilize memory files and YARA
signatures to classify samples based on our analysts experience for malware families.
We augment this information with our behavior-based classification and clustering for
automatic labeling.

Workers. The workers” VMs are functionally independent of the controller, which al-
lows the system to add and remove VMs without affecting the overall operation of the
system. The VMs consist of VMDK images that have different versions of OSes with
different patch levels. The current system supports Windows XP, Vista, and 7 with var-
ious service packs (SP). The VMs also have software such as Microsoft Office, Adobe
Reader, and a python agent used to copy and configure the VM by the controller. The
software installed on the VMs vary based on OS version. For most samples reported in
this paper in section 4, we used VMs with Windows XP SP2 and with several software
packages and programs installed, including Microsoft Office 2007, Adobe Acrobat 9.3,
Java 6-21, FireFox 3.6, Internet Explorer 6, Python 2.5, 2.6, and VMware Tools. For
hardware configuration for the VMs see Table 2 (all software packages are trademarks
of their corresponding producers). This choice of OS was necessitated by the fact that
infections are reported by customers on that OS. However, in case where samples are
known to be associated with a different OS version, the proper OS is chosen with similar
software packages.



Backend storage — database. The collected artifacts are parsed into a MySQL database [1]
by the controller. The database contains several tables like files, registry, binaries, PCAP
(packet captures), network, HTTP, DNS, and memory_signature table. Each of the table
contains meta data about the collected artifacts with exception to PCAP and binaries ta-
ble. The binaries table stores files meta data and content where the files table stores meta
information about files created, modified, and deleted per sample run. The files table
contains parsed meta data from the binaries table. The PCAP table is large in size, and
stores the complete raw network capture of the sample during execution which would
include any extra files downloaded by the sample. The HTTP, DNS, and network tables
store parsed meta data from the PCAP table for quick lookups. MaLabel: Automated
Labeling. MaLabel is a classification and clustering system that takes behavior profiles
containing artifacts generated by AutoMal, extracts representative features from them,
and builds classifiers and clustering algorithms for behavior-based group and labeling
of malware samples. Based on the class of algorithm to be used in MaLabel, whether
it is binary classification or clustering, the training (if applicable) and testing data into
MalL.abel is determined by the user. If the data is to be classified, MaLabel trains a
model using a verified and labeled data subset and uses unlabeled data for classifica-
tion. MaLabel allows for choosing among several classification algorithms, including
support vector machines (SVM)—with a dozen of settings and optimization options, de-
cision trees, linear regression, and k-nearest-neighbor, among others. MaLabel leaves
the final decision of which algorithm to choose to the user based on the classification
accuracy and cost (both run-time and memory consumption). MaLabel also has the
ability to tune algorithms by using feature and parameter selection (more details are in
section 4). Once the user selects the proper algorithm, Mal.abel learns the best set of
parameters for that algorithm based on the training set, and uses the trained model to
output labels of classes for the unlabeled data. Those labels serve as an ultimate results
of MaL abel, although they can be used to re-train the classifier for future runs. Using the
same features used for classification, MaLabel uses unsupervised clustering algorithms
to group malware samples into clusters. MaLabel features a hierarchal clustering algo-
rithm, with several variations and settings for clustering, cutting, and linkage (cf. §4).
Those settings are adjustable by the user. Unlike classification, the clustering portion is
unsupervised and does not require a training set to cluster the samples into appropriate
clusters. The testing selector component will run hierarchal clustering with several set-
tings to present the user with preliminary cluster sizes and number of clusters created
using the different settings. Based on the preliminary results the user can pick which
setting fits the data set provided and can proceed to labeling and verification process.

3.2 Features and Their Representation

While the artifacts generated by AutoMal provide a wealth of features, in MaLabel we
used only a total of 65 features for classification and clustering. The features are broken
down based on the class of artifacts used for generating them into three groups—a
listing of the features is shown in Table 1:

File system features. File system features are derived from file system artifacts created
by the malware when run in the virtual enviornment. We use counts for files created,
deleted, and modified. We also use counts for files created in predefined paths like % AP-
PDATA %, % TEMP%, %PROGRAMFILES %, and other common locations. We keep a
count for files created with unique extensions. For example if a malware sample creates
4 files on the system, a batch file (.BAT), two executable files (.(EXE), and a configura-
tion file (.CFG), we would count 3 for the number of unique extensions. Finally, we use
the file size of created files; for that we do not use raw file size but create the distribution



Table 1. List of features. Unless otherwise specified, all of the features are counts associated with
the named sample.

Class|Features
File system|Created, modified, deleted, file size distribution,
unique extensions, count of files under selected
and common paths.
Registry|Created keys, modified keys, deleted keys,
count of keys with certain type.

Network
IP and port|Unique destination IP, counts over certain ports.
Connections| TCP, UDP, RAW.
Request type|POST, GET, HEAD.
Response type|Response codes (200s through 500s).
Size|Request and response distribution.
DNS|MX, NS, A records, PTR, SOA, CNAME.

of the files’ size. We divide the file size range, corresponding to the difference between
the size of the largest and smallest files generated by a malware, into multiple ranges.
We typically use four ranges, one for each quartile, and create counts for files with size
falling into each range or quartile.

Registry features. The registry features are similar to the file features since we use
counts for registries created, modified, and deleted, registry type like REG_SZ, REG_BIN,
and REG_DWORD. While our initial intention of using them was exploratory, those fea-
tures ended up very useful in identifying malware samples, especially when combined
with other features (more details are in §4).

Network features. The network features make up the majority of our 65 features. The
network features have 3 groups. The first group is raw network features, which includes
count of unique IP addresses, count of connections established for 18 different port
numbers, quartile count of request size, and type of protocol (we limited our attention
to three popular protocols, namely the TCP, UDP, RAW). The second group is the HTTP
features which include counts for POST, GET, and HEAD request; the distribution of
the size of reply packets (using the quartile distribution format explained earlier), and
counts for HTTP response codes, namely 200, 300, 400, and 500. The third category
includes DNS features like counts for A, PTR, CNAME, and MX record lookups.

4 Evaluation

To evaluate the different algorithms in each application group, we use several accuracy
measures to highlight the performance of various algorithms. Those measures are the
classical used literature metrics: precision, recall, accuracy, and F-1 score.

4.1 Hardware and Benchmarking

In Table 2, we disclose information about the hardware used in AMAL. While the
hardware equipment used in running MaLabel are not fully utilized, the hardware spec-
ifications used in AutoMal are important for its performance. For example, memory
signatures and file system scans heavily depend on those specifications. For that, the
parameters are selected to be large enough to run the samples and the hosting oper-
ating system, but not too large to make the analysis part infeasible within the allotted
time for each sample. Notice that, and as explained earlier, the operating system used
in AutoMal can be adjusted in the initialization before running samples. However, for
consistency we use the same OS to generate the artifacts for the different samples.



4.2 Datasets
The dataset used in this work is mainly

from AutoMal, and as explained ear-  quple 2, Benchmarking of hardware used for the
lier, is fed to the system by internal user different parts of our system. MaLabel 1 and MaL-
and external customers. Internal users abel 2 are platforms used for clustering and classi-
are internal analysts of malicious code, fication, respectively.

and external users of the system are
customers, who could be security ana- [Component[[AutoMal VM[MaLabel 1]MaLabel 2]

lysts in corporates (e.g., banks, energy |# CPUs 1 1 1
companies, etc), or other antivirus com- |RAM 256MB 120GB 192GB
panies who are partners with us (they |Hard drive ||6GB 200GB  |2TB

do not pay fees for our service, but we [OS Win XP* CentOS 6 |CentOS 6

mutually share samples and malware

intelligence). The main dataset used in

this study consists of 115, 157 malware samples. The set of samples used in this study
is selected as a simple random sample from a larger population of malware samples
generated over that period of time. More details on the samples are in [17].

Table 3. Malware samples and their labels used in the classification training and testing.

Size| % |Family Description

1,077]0.94 | Ramnit File infector and a Trojan with purpose of
stealing financial, personal, and system in-
formation

1,090| 1.0 |Bredolab |Spam and malware distribution bot

1,091] 1.0 [ZAccess |Rootkit trojan for bitcoin mining, click
fraud, and paid install.

1,205| 1.1 [Autorun  |Generic detection of autorun functionality
in malware.

1,336| 1.2 |Spyeye Banking trojan for stealing personal and fi-
nancial information.

1,652| 1.4 [SillyFDC |An autorun worm that spreads via portable
devices and capable of downloading other

malware.

2,086| 1.8 |Zbot Banking trojan for stealing personal and fi-
nancial information.

2,422 2.1 |TDSS Rootkit trojan for monetizing resources of
infected machines.

5,460| 4.7 | Virut Polymorphic file infector virus with trojan
capability.

7,691| 6.7 |Sality same as above, with rootkit, trojan, and

worm capability.
21,047|18.3 |Fakealert |Fake antivirus malware with purpose to
scam victims.

46,15740.1 | Subtotal
69,000(59.9 | Others Small mal, < 1k samples each
115,157 100 | Total

Labeling for validation: A selected set of families to which those samples belong (with
their corresponding labels) are shown in Table 3. The dataset particularly includes 2086
samples that are entirely inspected and verified as Zeus or one of its variants by security
analysts, while other labels are either generated using the same method (on a subset of
the samples in the family) and the rest of the label makes use of census over returned
antivirus detections. For that, we query a popular virus scanning service with 42 scan
engines, and pass the MDS5 of all samples in the larger dataset to it. We use the detection
provided by the scan to create a census on the label of individual samples: if a sample is



detected and labeled by a majority of virus scanners of a certain label, we use that label
as the ground truth (those labels are shown in Table 3). We note that the Zeus family
reported in Table 3 is manually inspected and labeled by internal analysts, and results
returned by the antivirus scanners for the MDS5s belonging to samples this family either
agree with this labeling, or assign generic labels to them, thus establishing that one can
rely on this census method for labeling and validation.

4.3 High-fidelity Malware Classification

We focus on the binary classification problem using the Zeus malware family [9], given
its unique ground truth, where every sample in this family is classified and labeled man-
ually by analysts. We then show the evaluation of different algorithms implemented in
MalL.abel to classify other malware families using the same set of features used in Zeus.
In all evaluations we use 10-fold cross validation—a formal definition and settings are
provided in [17].

Classification of Analyst-vetted Samples Malabel implements several binary clas-
sification algorithms, and is not restricted to a particular classifier. Examples of such
algorithms include the support vector machine (SVM), linear regression (LR), classifi-
cation trees, k-nearest-neighbor (KNN), and the perceptron method—all are formally
defined along with their parameters in [17]. We note that KNN is not a binary classifier,
so we modified it by providing it with proper (odd) &, then voting is performed over
which class a sample belongs to. To understand how different classification algorithms
perform on the set of features and malware samples we had, we tested the classification
of the malware samples across multiple algorithms and provided several recommenda-
tions. For the SVM, and LR, we used several parameters for regularization, loss, and
kernel functions (definitions are in [17]).

For this experiment, we selected the same Zeus malware dataset as one class, as
we believe that the highly-accurate labeling provides high fidelity on the results of the
machine learning algorithms. For the second class we generated a dataset with the same
size as Zeus from the total population that excludes ZBot in Table 3. Using 10-fold
cross validation, we trained the classifier on part of both datasets using the whole of
65 features, and combined the remaining of each set for testing. We ran the algorithms
shown in Table 4 to label the testing set. For the performance of the different algorithms,
we use the accuracy, precision, recall, and F-score.

The results are shown in Table 4. First of all, while all algorithms perform fairly well
on all measures of performance by achieving a precision and recall above 85%, we no-
tice that SVM (with polynomial kernel for a degree of 2) performs best, achieving more
than 99% of precision and recall, followed by decision trees, which is slightly lagged
by SVM (with linear kernel). Interestingly, and despite being simple and lightweight,
the logistic regression model achieves close to 90% on all performance measures, pro-
viding competitive results. While they provide less accuracy than the best performing
algorithms, we believe that all of those algorithms can be used as a building block in
MalLabel, which can ultimately make use of all classifiers to achieve better results.

As for the cost of running the different algorithms, we notice that the SVM with
polynomial kernel is relatively slow, while the decision trees require the most number
of features to achieve high accuracy (details are omitted). On the other hand, while the
dual SVM provides over 95% of performance on all measures, it runs relatively quickly.
For that, and to demonstrate other aspects in our evaluation, we limit our attention to
the dual SVM, where possible. SVM is known for its generalization and resistance to
noise [23].



Features Ranking and Se- Table 4. Results of binary classification using several algo-

lection We also followed . - ) . -
. rithms in terms of their accuracy, precision, recall, and F-
the recent literature [14, 8, 7] score

to rank the different features [ Algorithm [ AT P ] RTF |

by their high-level category. [GUN Polynomial Kernal[|99.22%98.92%]99.53%]99.22%
We ran our classifier on the ™ Classification Trees ||99.13%99.19%]99.06%|99.13%
file system, memory (where [ ™SVM Linear Kernal |97.93%]98.53%|97.30%|97.92%
available), registry, and net-  "SVM Dual (L2R, L2L) [[95.64%]96.35% |94.86%95.60%
work features independently. [ Log. Regression (L2R) |[89.11%92.71% |84.90% |88.63%
For the network features, we K-Nearest Neighbor [[88.56%(93.29%|83.11%87.90%
further ranked the connec- | Log. Regression (L1R) [[86.98%(84.81%(90.09%(87.37%
tion type, IP and port, re- Perceptron 86.15%|84.93%(87.89%(86.39%
quest/response type and size,

and DNS as sub-classes of

features. From this measurement, we found that while the file system features are the
most important for classification—they collectively achieve more than 90% of precision
and recall for classification—the port features are the least important. It was not clear
how would the memory feature rank for the entire population of samples, but using them
where available, they provide competitive and comparable results to the file system fea-
tures. Finally, the rest of the features were ranked as network request/response and size,
DNS features, then registry features. All features and their rankings are deferred to [17].

4.4 Large Scale Classification

One limitation of the prior evaluation of the classification algorithm is its choice of
relatively small datasets that are equal in proportion for training and testing, for both
the family of interest and the mixing family. This, however might not be the case in
operational contexts, where even a popular family of malware can be as small as 1%
of the total population as shown in Table 3 for several examples. Accordingly, in the
following we test how the different classifiers are capable of predicting the label of a
given family when the testing set is mixed with a larger set of samples. For that, we use
the labeled samples as families of interest, while the rest of the population of samples as
the “other” family (they are collectively indicated as one class). We run the experiment
with the same settings as before (5% is saved for training the classifier and the rest is
used for testing). Where possible, we use 10-fold cross validation to minimize bias. In
the following we summarize the results of seven of interest. The results are in Table 5.
First of all, we notice that although the performance measures are less than those
reported for Zeus in section 4.3, we were still able to achieve a performance nearing
or above 90% on all performance measures for some of the malware families. For the
worst case, those measures where as low as 80%. While these measures are competitive
compared to the state-of-the-art results in the literature (e.g., the results in [23] were as
low as 60% for some families), understanding the reasons behind false alarms is worth
investigation. To understand those reasons, we looked at the samples marked as false
alarms and concluded the following reasons behind the degradation in the performance.
First, we noticed that many of the labels used for the evaluation that resulted into the
final result are not by analysts, but come from the census over antivirus scans—even
though a census on a large number of AV scans provides a good accuracy, it is still
imperfect. Second, we notice that the class of interest is too small, compared to the
total population of samples, and a small error is amplified for that class—notice that
this effect is unseen in [23] where classes are more balanced in size (e.g., 1 to 9 ratios
versus 1 to 99 ratio in our case). Finally, part of the results is attributed to the relatively



similar context of the different families of malware samples, as shown in Table 3, thus
in the future we will explore enriching the features to achieve higher accuracy.

Table 5. Binary classification of several malware families.

Family | A [ P [ R [ F |
ZAccess ||185.9%(80.7%|94.3%|87.0%
Ramnit [|91.0%|87.1%|96.3%|91.5%
FakeAV ||85.0%(82.5% |88.8%|85.6%
Autorun [[87.9%85.2%|91.8% |88.4%
TDSS ({90.3%89.6%|91.2%90.4%
Bredolab||91.2%|88.0%195.3%(91.5%

Virut ||86.6%(85.9%|87.5%|86.7%

Benchmarking and scalability. We benchmarked our 115,157 samples using several
distance calculation algorithms and hierarchal clustering methods with a cut off thresh-
old of 0.70. From this benchmarking, we observe the high variability of time it takes
for computing the distance matrix, which is the shared time between all algorithms set-
tings. For example, computing the distance matrix using the Jaccard index (which is the
only distance measure used in the literature for this purpose thus far [6]) takes 5820 sec
(97 min) whereas all other distance measures require between 27.8 and 36.2 minutes.

5 Conclusion

In this paper we introduced AMAL, the first operational large-scale malware analysis,
classification, and clustering system. AMAL is composed of two subsystems, AutoMal
and Mal.abel. AutoMal runs malware samples in virtualized environments and collects
memory, file system, registry, and network artifacts, which are used for creating a rich
set of features. Unlike the prior literature, AutoMal combines signature-based tech-
niques with purely behavior-based techniques, thus generating highly-representative
features, and use them for both classification and clustering.
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