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Abstract. In recent years, researchers have relied heavily on labels pro-
vided by antivirus companies in establishing ground truth for applica-
tions and algorithms of malware detection, classification, and clustering.
Furthermore, companies use those labels for guiding their mitigation
and disinfection efforts. However, ironically, there is no prior systematic
work that validates the performance of antivirus vendors, the reliability
of those labels (or even detections), or how they affect the said applica-
tions. Equipped with malware samples of several malware families that
are manually inspected and labeled, we pose the following questions:
How do different antivirus scans perform relatively? How correct are the
labels given by those scans? How consistent are AV scans among each
other? Our answers to these questions reveal alarming results about the
correctness, completeness, coverage, and consistency of the labels utilized
by much existing research. We invite the research community to challenge
the assumption of relying on antivirus scans and labels as a ground truth
for evaluating malware analysis and classification techniques.
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1 Introduction

Antivirus (AV) companies continuously evolve to improve their products. AV
products provide users with an added protection from malware threats, but
they are not a complete solution. Malware evolves at a much faster rate than AV
products, which then forces AV companies to innovate and improve approachs for
malware detection. AV products provide two major functionalities: first and more
importantly, detecting malicious software and secondly, labeling malware based
on a family association. Labeling is an important problem to AV vendors because
it allows them to filter known malware and focus on new malware families or
variants of similar malware families. Labeling also allows the AV vendors to track
a malware family and its evolution.

The AV market is very diverse and provides much room for competition,
allowing new companies to build AV products and compete for a share of the
market. This diversity of AV software vendors creates disorganization in the AV
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market characterized by a lack of standards for information sharing, malware
family naming, and transparency. For example, each AV company has its own
way of naming malware families as they are discovered. Malware names are usu-
ally created by analysts who study new malware samples, by utilizing artifacts
within the malware to derive the given names. Some malware is so popular in
underground forums, like SpyEye, Zeus, ZeroAccess, DirtJumper, etc., that AV
vendors use those names given to the malware by the authors or the malware
market. Other smaller and less prominent malware is usually named indepen-
dently by each AV company. For example, targeted malware, which is known as
advance persistent threat (APT), is low key malware that AV vendors name and
track independently.

Malware naming and labeling has many useful applications in the security
field. Security practitioners have an interest in identifying a malware by a family
name so that they can mitigate the threat for their organization. AV vendors can
use labels to filter out insignificant malware and focus only on high priority mal-
ware families. Researchers in academia have benefited from detections and label-
ing of malware provided by AV vendors in many ways. For example, researchers
in the fields of malware analysis, detection, and classification have benefited from
AV scans and labels in establishing baselines to compare their designs against.
In fact, there exists a large body of academic literature that relies on AV labels
to verify methods and techniques, including [2,3,6,12,13,16,20,22,23] (a survey
of those works is in [15]).

However, the use of AV labels for validating classification research—while
creating a ground truth for comparing different works to each other— has many
shortcomings and pitfalls. First, oftentimes malware samples collected by re-
searchers are not necessarily represented in their entirety within a single mal-
ware scanning engine. Accordingly, researchers tend to use multiple engines to
cover their datasets, despite inconsistencies in labeling and naming conventions
used by those engines. Those inconsistencies are resolved by translating names
from one AV vendor to another, although—as we mentioned earlier—different
AV vendors may use different names to refer to the same family. Even worse, dif-
ferent families may have the same name in different AV detections—for example
“generic” and “trojan” are used by many vendors as an umbrella label [9].

1.1 The Origins of Inconsistency and Implications

The AV inconsistencies arise because of the methods used by the AV vendors for
detection. The primary goal for an AV vendor is detect malicious code, hence
making labeling a secondary priority. Most AV vendors use a combination of
static and heuristic-based methods to identify and label malware. Static signa-
tures are insufficient because malware authors use obfuscation techniques, which
quickly outdates a static signature. A heuristic signature, on the other hand,
allows detection based on the behavior of the unknown software. A heuristic
signature can consist of several behavior conditions that will trigger the signa-
ture. For example, if a piece of unknown software listens on a port for incoming
connections, injects code into privileged processes, and hooks specific Windows
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APIs, then a heuristic signature is triggered and an alert is generated. These
heuristic rules are loosely designed to detect malicious code, hence they are not
suitable for labeling due to their generic labeling schemes.

Those inconsistencies create inefficiencies in the industry and could prevent
stakeholders from benefitting from a common standard for malware family nam-
ing and information sharing. For example, if a user of an AV engine Ai detects
a malware with label `1, the user might have a mitigation plan for that malware
family. On the other hand another AV vendor, Aj , detects the same malware as
`2, then the user of Aj will not be able to use an existing mitigation plan for
the same malware. This inefficiency can cost organizations millions of dollars in
intellectual property theft or reputation damage. Understanding the size of the
damage caused by this issue is nontrivial, since companies are conservative in
revealing information about the compromise of their systems and exfiltration of
their users’ or proprietary data, and only insiders are aware of this threat and its
cost. However, there has been recent public information that support, highlight
the trend, and put good figures on that cost and pervasiveness of such phenom-
ena; examples include the hacking of LinkedIn [18], Ubisoft [4], LivingSocial [17],
and most famously Nissan [10].

An even worse problem related to those inconsistencies is when the same
AV engine detects the same malware family with different labels due to an eva-
sion technique used by the malware. For example, if a malware is initially de-
tected using a static signature, then later—due to its polymorphism technique—
heuristically using a generic malicious behavior, the AV vendor will give it an-
other label. This will create an inconsistent label within the same AV vendor’s
labeling schema. These inconsistencies and shortcomings may not have a direct
implication on the malware detection provided by the AV scanner, although they
impact applications that use AV labeling. For example, mislabels may propagate
error throughout an experiment that relies on those labels as a ground truth.
In the literature, researchers widely accepted AV labels as a ground truth of
malware family membership, including applications of classification, clustering,
and alternative detection techniques.

Motivated by our recent work on cross-validating AV labels against highly-
accurate expert-vetted and labeled malware samples, we pursue the study of
systematically understanding those inconsistencies and reveal several interesting
insightful remarks that greatly affect the way applications based on AV provided
labels (or even detections) work. Our study to address the problem, while in-
spired by the work in [2], is the first of its type to go at length to systematically
evaluate those labels and detections. We do this by considering one popular mal-
ware family, the Zeus banking Trojan, thus giving AV scanners many benefits of
the doubt. The Zeus banking Trojan is a famous banking Trojan that is used by
cyber criminals to run a botnet to steal money, credentials, and system resources
from the infected victims. In particular, the Zeus source code was leaked in 2011
and since then there has been numerous variants that have surfaced [7]. Our
samples are used so that their detection in our system is old enough to make
sure that they are populated in those AV scanners. The popularity of the stud-
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ied malware family makes it a good candidate to evaluate detections and labels,
because one would expect this family to be well researched in the AV commu-
nity, thus reducing inconsistencies in labels and detections across different AV
vendors.

1.2 Contribution

The contribution of this study is twofold. We provide metrics for evaluating AV
detections and labeling systems. Second, we use a highly-accurate and manually-
vetted dataset for evaluating the detections and labelings of a large number of
AV engines using the proposed metrics. The dataset, scripts, and AV scans will
be all made available publicly to the community to use and contribute to problem
at hand. To the best out our knowledge, there is no prior systematic work that
explores this direction at the same level of rigor we follow in this paper (for the
related work, see section 4). Notice that we disclaim any novelty in pointing out
the problem. In fact, there has been several works that pointed out problems with
AV labels [2, 3], however those works did not systematically and quantitatively
study the performance of AV scanners and the accuracy of their labels. This, as
mentioned before, is in part because of the lack of datasets with solid ground
truth of their label1.

1.3 Organization

The organization of the rest of this paper is as follows. In section 2 we provide
an overview of the dataset we used in this study and the method we use for
obtaining it. In section 3 we review the measurements and findings of this study:
we first introduce evaluation metrics for AV vendors, and then use those metrics
to evaluate 48 vendors and their performance on our dataset. In section 4 we
review the related work, followed by concluding remarks, open directions, and
the future work in section 5.

2 Datasets

To evaluate the different AV vendors based on a common ground of comparison,
we use the Zeus banking trojan, which has been identified manually by analysts.
Our dataset consists of 1,000 samples, which is large enough to derive meaningful
insights into the problem at hand and small enough to be manually vetted for
correct results2. To identify the label of this family, we used forensic memory sig-
natures to identify a set of possible Zeus samples from our malware repositories,

1 Ironically, some of those works pointed out the problem and yet used AV-provided
labels for validating their malware clustering algorithms [3, 15].

2 We use malware samples accumulated over a period of a year (mid 2011 to 2012).
As we will see later, this would give the AV vendors an advantage and might over-
estimate their performance compared to more emerging threats (APT).



Towards A Methodical Evaluation of Antivirus Scans and Labels 5

then we manually vetted the set to ensure our final data set is clean of malware
families that might falsely trigger our memory signatures. More details on this
method for vetting malware samples is described in [9]. For the evaluation of
our data set we used VirusTotal [1] signatures for 48 AV engines to test several
evaluation measures. We discarded all engines that provided detections for only
less than 10% of our dataset.

VirusTotal is a multi-engine AV scanner that accepts submissions by users
and scans the sample with multiple AV engines. The results from VirusTotal
have much useful information, but we only use the AV vendor name and their
detection label. VirusTotal will provide more AV results when a malware sample
has been submitted in the past. The reason for this is that AV engines will
provide an updated signature for malware that is not previously detected by
their engines but was detected by other engines. Hence, malware samples that
have been submitted multiple times for a long period of time will have better
detection rates. However, because no researchers have had an alternative to
the labels the AV scanners provide, so far the completeness, consistency, and
correctness—the three comparison and evaluation measures we study in §3—of
AV labels and scans were not challenged. Implications of those metrics of an AV
scan were overlooked in the literature.

3 Measurements

3.1 Evaluation Metrics

In this work we use several evaluation metrics, namely completeness, consistency,
and correctness, and coverage. The metrics are defined as follows:

– Completeness: For our references dataset D, we compute the completeness of
the scans of an AV vendor Ai as the number of detections returned by Ai

normalized by the size of the dataset, |D|.
– Consistency: The consistency is computed as the agreement (or disagreement)

in detections between Ai and the rest of AV vendors we tested. For that,
we use the Jaccard distance which captures the number of samples consis-
tently detected or undetected by two vendors Ai and Aj and results in n− 1
consistency values for Ai.

– Correctness: Given our reference dataset D, we compute the correctness of an
AV vendor Ai as the number of detections matching our reference detection
normalized by the size of the reference dataset, |D|.

– Coverage: We define the coverage as the number of the AV scans (list of detec-
tions and labels, respectively) required for achieving a correct and complete
scan. This is, as various AV scans will provide partial correctness and com-
pleteness scores for the reference dataset, this measure would determine how
many AV vendors one needs to utilize to get a perfect score for both measures.
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Fig. 1. Completeness of detections by 48 AV vendors. Popular AV scans used in the
literature include Avira (Antivir), Kaspersky, Symantec, McAfee, Microsoft, AhnLab,
AVG, and ClamAV, which are bars numbers: 27, 18, 11, 4, 36, 40, 47, and 17, respec-
tively. (in all figures)

0.0

0.2

0.4

0.6

0.8

1.0

 0  10  20  30  40  50

C
o

rr
e

c
tn

e
s
s

Antivirus Scan

0.0

0.2

0.4

0.6

0.8

1.0

 0  10  20  30  40  50

C
o

rr
e

c
tn

e
s
s

Antivirus Scan

Fig. 2. Correctness of detections by 48 vendors. Color code: green is precise detection
(Zbot), red and violet are translated detections (generic and trojan). Upper figure is
normalized by 1000 (incorporates the completeness score), while the lower figure is
normalized by number of detections of the given AV scan.

3.2 Results and Analysis

Completeness. For completeness, and as explained above, we use the ratio of
detections out of our 1,000 sample set per an AV engine. For example, if an AV
engine Ai has 950 detections for the 1,000 sample dataset then AV engine Ai has
a 0.95 completeness regardless to what labels that are returned by the named
AV. Figure 1 plots the completeness of all AV engines that were used in the
evaluation. The results show a detection rate as low as 0.15 for our dataset and
as high as 0.94 for the given AV engines. Roughly 45% of the AV engines in our
study have a less than 70% detection rate (0.7 completeness score).

While the completeness scores given to AV scanners are not surprising, the
high diversity in the score and large range are. Thus, the result has many in-
teresting implications. Most importantly, given that no AV scanner provided a
completeness of one, we cannot establish consistency over a labeling based on
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a single reference AV vendor. Furthermore, we cannot establish a consensus on
what different AV providers mean by their labels for the entire dataset. Second,
even the most widely used AV scanners are do not provide sufficient results:
among the most widely used AV vendors in the academic community for vali-
dation of studies are Avira (Antivir), Kaspersky, Symantec, McAfee, Microsoft,
AhnLab, AVG, and ClamAV. While they are among the most complete AV scans
for the reference dataset (with completeness scores ranging from 0.76 to 0.94),
we notice that the small “incompleteness” of scans is problematic to the appli-
cation for which the scans are used. While researchers strive to achieve 99% of
accuracy in their classification of malware samples [3], a 6% of incompleteness is
an overlooked margin of error, and it is unclear how this margin is considered in
the total performance measures in the literature. Even worse, the completeness
of a scan does not guarantee a correctness of a detection.
Correctness. We define the correctness as the ratio of detections with a correct
label per AV engine for all of our dataset. In our study we considered three labels
to be acceptable for correctness, “Zbot,” “Trojan,” and “Generic.” Although
those labels might be anticipated to yield high results, especially for generic
labeling (Generic) the results show otherwise. Figure 2 illustrates two plots
of the correctness evaluation. The bar chart is color coded differently for each
label mentioned above, green is “Zbot,” red is “Generic,” and violet is “Trojan”
(the height of the bar is inclusive of all detections and variants). The difference
between the two bar charts is the normalization value used for both. While the
first bar chart is normalized based on the size of our dataset of 1,000 samples to
incorporate the completeness score, the second bar chart is normalized by the
number of detections for the given AV engine. We observe that the majority of
AV engines label the malware “Zbot” less than 50% (0.5 of correctness) of the
time per detection. We also observe that the “Zbot” label is used by almost all
of the AV engines. Note that the correctness score for each AV engine is lower
than the completeness score because other labels are used by the AV engine to
label our dataset, which vary outside the three major labels we chose.

This evaluation measure of AV scans has perhaps the most critical implica-
tion. In short, this measure says that, even when an AV provides a complete
scan for a malware dataset, it is still not guaranteed that the same scanner will
provide a correct label, and thus a labeling provided by an AV vendor cannot
be used as a certain ground truth for labeling.
Consistency. We define the consistency as an AV engine detecting a malware
sample alongside other AV engines. The consistency is determined per sample
and is compared across all AV engines. We observed on average an AV engine
is about 50% consistent with other AV engines, meaning that given a malware
sample detected by Ai, 50% of the time it is also detected by Aj as malicious.
Figure 3 illustrates the consistency of each AV engine across all other engines
using box plots (min, first quartile, median, third quartile, and max). The figure
clearly displays a median of approximately 50% for all AV engines. This finding
further raises the question of how many AV scanners it would take to get a
consistent detection for a given dataset.
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Fig. 3. Consistency of detections by 48 vendors.

Coverage: How many AV scanners? For completeness and correctness we
pose the following question: What is the least number of scanners it takes to get a
complete (or correct) scan of our reference dataset? This question stems from the
fact that many researchers in the literature combined more than one AV vendor’s
results to get a better coverage of labels for their experiments. Answering this
question is not as easy as it sounds: the problem is the optimization version of the
set-cover problem, which is known to be NP-hard. Thus, we consider heuristics
to answer the question.

Again, we use the same scans we used for plotting the previous figures of
the completeness and correctness scores. We use two strategies for each score,
namely l/s and s/l, as shown in Figure 4. For l/s, we start by considering
potential scans to obtain the required completeness from large to small, add
them to the list of final scans, increase the number of AV scanners by one for
each, and recompute the completeness (correctness) score respectively. The s/l
strategy does the opposite. We use the strategies as extremes, and don’t consider
the best strategy 3. As expected, we notice that it takes fewer scanners to achieve
a completeness of 1 than it takes to achieve correctness of 1, even with the better-
performing strategy. Numerically, we observe that while 5 scans are required to
achieve completeness of 1, 22 AV scans give only 0.97 of correctness. Indeed,
even 48 AV scanners (the total) were able to achieve only 0.99 of correctness.

4 Related Work

Ironically, while the use of AV-provided labels has been widely employed in
the literature for training algorithms and techniques utilized for malware clas-

3 The greedy strategy, by adding the AV scan with least overlap to the current set, is
the best known approximation [21].
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Fig. 4. Completeness (per detections and correct detections) when using largest to
smallest and smallest to largest scan to accumulate the entire dataset.

sification and analysis [2, 3, 5, 8, 9, 11–14, 19, 20, 23], there is less work done on
understanding the nature of those labels. Recent works, like [15] and [13] only
pointed out the problem of AV-provided labels without any measurements or
evaluation.

To the best of our knowledge, the only prior work dedicated to systematically
understanding AV-provided labels is due to Bailey et al. [2]. However, our work
is different from that work in several aspects highlighted as follows:

– While our work relies on a set of manually-vetted malware samples for which
we know the accurate label and family, the work in [2] relies on an AV vendor
as a reference and compares other vendors to it. In particular, the authors
use McAfee as the presumed complete and accurate reference of detection and
labeling and compare a handful other vendors to it. Our technique avoids
this issue by relying on a manually inspected reference set against which the
performance of many AV vendors is tested.

– Our study considers the largest set of AV-vendors studied in the literature
thus far for a comparative work. We do that by relying on the largest number
of manually-vetted malware samples as well. As shown in the study, even when
certain AV providers are consistent among each other, they still don’t provide
perfect results with respect to the ideal ground truth.

– Finally, given that we rely on a solid ground truth, we develop several met-
rics of AV scans evaluation that are specific to our study: the correctness,
completeness, and coverage. On the other hand, the prior work considers all
results provided by the reference AV scan to be correct and compares other
AV scans to them.
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5 Conclusion and Future Work

In this work, we unveil the danger of relying on incomplete, inconsistent, and
incorrect malware labeling systems provided by AV scanners and using them
in the research community for validating malware analysis and classification
techniques. Our study shows that one needs many independent AV scanners
to obtain complete and correct labels. Our study has many limitations to it,
and does not try to answer many questions that are either out of its scope or
beyond our resources and capabilities. First of all, our study cannot be used as
a generalization on how AV vendors would perform against each other in other
contexts, because we don’t use every hash in every given AV scanner. Similarly,
the same generalization cannot be used for the Zeus malware family, since we
didn’t use all samples known to be Zeus against the AV scanners. Our study
is, however, meaningful in answering the limited context’s questions it poses
for 1000 malware samples. Furthermore, our study goes beyond the best known
work in the literature in the problem by not relying on AV-provided vendors as
reference for comparing other vendors.

To this end, in the future we will try to answer those questions with more
manually-vetted malware samples belonging to different families, and by study-
ing better ways of obtaining consensus over AV-provided labels, ways that can
tolerate many inconsistencies among vendors. We see a solution to the problem
by enabling information sharing, so one of our future works is to explore how
this sharing would enable better use of indicators for better malware labeling.
We will release all datasets used in this study (AV scans, hashes, and scripts
used for comparison), to help pursue alternatives. We hope this note will trigger
further investigation and attention in the community to this crucial issue.

Acknowledgement. We would like to thank Andrew West for proofreading
this work, and Allison Mankin and Burt Kaliski for their feedback on an earlier
version of this work.
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