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Abstract

Using runtime execution artifacts to identify malware and its associated “family” is an established technique in the
security domain. Many papers in the literature rely on explicit features derived from network, file system, or registry
interaction. While effective, the use of these fine-granularity data points makes these techniques computationally
expensive. Moreover, the signatures and heuristics are often circumvented by subsequent malware authors. In this
work, we propose Chatter, a system that is concerned only with the order in which high-level system events take
place. Individual events are mapped onto an alphabet and execution traces are captured via terse concatenations of
those letters. Then, leveraging an analyst labeled corpus of malware, n-gram document classification techniques are
applied to produce a classifier predicting malware family. This paper describes that technique and its proof-of-concept
evaluation. In its prototype form only network events are considered and eleven malware families are used. We show the
technique achieves 83%-94% accuracy in isolation and makes non-trivial performance improvements when integrated
with a baseline classifier of combined order features to reach an accuracy of up to 98.8%.
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1. Introduction

Malware has emerged as a challenging threat with the
increased infection rates and levels of sophistication [1–
3]. Examples of such threats include data exfiltration [4],
denial-of-service attacks [5], and espionage [6], among many
others. In order to defend against malware threats, the
research community has spent a tremendous amount of efforts
understanding their behavior so that detection, classification,
and labeling of malware are performed with high accuracy
using analysis techniques [7–13]. Threat information sharing
for the improvement of the malware detection system by
collecting and sharing more information also has been
actively studied [14–16].

Malware analysis aims to inspect binaries in various
ways, and techniques fall mainly into two categories: static
and dynamic analysis. Static analysis is achieved without
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running the malware and consists of examining meta-data
and patterns in the binaries. On the other hand, dynamic
analysis utilizes artifacts that are generated by malware at
runtime. The process for dynamic analysis entails executing a
malware sample in a controlled environment so that changes
in the environment including network traces, file system
changes, memory access, and registry modifications, are all
observed and recorded. The advantages of static analysis are
multifold: static analysis techniques allow for comprehensive
code examination of malware and are considered fast and
scalable because they look for pre-computed signatures in
the binaries. However, attackers can evade static analysis
techniques through code obfuscation. In contrast, dynamic
analysis is capable of detecting unseen malicious behavior
contained in obfuscated code, but it requires setting up the
sandbox environment and allocating resources for execution,
which is an expensive process.

Typically, execution of a fully-fledged analysis system
such as AMAL [17] requires observing interactions between
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a binary and the underlying system’s components, such as
memory, file system, registry and network, for a certain
amount of time to extract behavioral artifacts and build
a feature vector from which the malware family is then
identified. This, in turn, requires analyzing 100s of megabytes
of memory, various gigabytes of virtual file system space,
several megabytes of the registry, and large network traces
of packet capture.

To reduce the overhead of the dynamic analysis, while
benefitting from its advantages over static analysis, we may
utilize either of two approaches. First, instead of extracting
deep features from the various classes of artifacts, we may
only use shallow features. For example, instead of considering
types of DNS responses, types of DNS records, counts per
type, features of queried name servers, and so forth, we
may only consider the total number of queried domains and
returned responses, among others as rather a shallow feature.
Similarly, instead of looking for deep content-based memory
features, we may consider the shallow feature of counts
over memory access. We notice that, while this approach is
promising in reducing the overhead of dynamic execution
it is only limited: shallow features are easy to circumvent
to evade detection, and much of the overhead is consumed
in executing the malware, rather than analyzing individual
artifacts (e.g., online feature extraction can be done using API
hooking [18]).

Another approach to reduce the overhead is by focusing
on a certain class of artifacts, instead of multiple classes. We
notice that not all classes of features are equally important
contributors to the accuracy of malware classifiers. Consider
the classification results shown in Figure 1 of the malware
family Shady RAT (simply ShadyRat, or SRAT), and the
contribution of various behavioral artifact classes in isolation
and combined; memory, registry, file system, and network.
We notice that, while the combined features extracted from
the four different classes provide an accuracy of more than
95%, the accuracy per individual class of features varies,
and ranges from the mid-50% to 75%, indicating that not all
classes of features are equally important. This also suggests
that a single class of behavior has the potential of being used
independently for classifying malware.

However, we note two issues with even with the best
class of features (network). First, it does not provide high
enough accuracy to warrant its use independently. Second, it
is unclear how difficult (and perhaps easy) it would be for an
adversary to circumvent a set of features that rely on a single
class of behavioral artifacts. To this end, the objective of this
work is to look into a new type of features engineered from
a single class of behavioral artifacts to boost the accuracy of
classification and to be robust against arbitrary evasions by
the adversary.

Determining the correct abstraction level at which to derive
features is equally important and yet very challenging [11,
12, 19–21]. Features that accurately represent malware
families are an important and defining criterion for high-
fidelity malware classification. Furthermore, the level of
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Figure 1. The accuracy of classifying malware
(ShadyRAT) based on various classes of artifacts in
isolation and combined (using AMAL [17], a fully-
fledged behavior-based malware analysis system).

complexity needed to obtain such abstractions in operational
settings determines the potential of adopting and accepting
such systems at scale. For example, sandboxing and virtual
execution is a privilege that comes with high costs in online
detection systems [22]. When a piece of malware runs on a
host, collecting deep features becomes invasive to users on
those hosts. To this end, while obtaining indicative artifacts
and features is very important, the degree of invasiveness is
also a significant consideration for operational systems.

In this paper, we introduce Chatter, a behavior-based
system for collecting run-time artifacts and feature analysis
and derivation, to address some of those problems. Chatter
is a robust system that relies on the order of the behavioral
artifacts that malware samples generate. Chatter can be
implemented as a stand-alone system or integrated into
more robust execution-based systems. As its ground truth,
Chatter relies on labels manually produced by malware
analysts. This vetting process requires many man-hours and
permits confident learning, although nicely integrated into the
operation of Chatter. The man-hours, however, are not needed
during the online operation.

To capture the ordering of events in malware execution,
Chatter uses n-grams over abstract behavioral profiles. To
boost its efficiency and achieve various desirable operational
properties, Chatter focuses on one class of behavioral
artifacts: network. The use of n-grams in the context of
malware classification is well established. However, a novel
contribution of our work is that it uses n-gram techniques to
encode the order of subsequences of network communication
events. Our hypothesis is that each malware type has a
unique communication pattern characterized by a certain
order of events. This hypothesis is supported by Forrest
et al. [23] which analyzed Unix system calls in a similar
fashion. Building on this assumption we attempt to classify
malware using only the order of network events. Our choice
of network features is not arbitrary: as discussed in the rest
of the paper, network features are cheaper than file system,
registry, etc. features to obtain. For example, they can be
captured without residing on the same host as the malware
being executed. For our study we looked at three malware
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families: Zeus, Darkness, and Shady RAT, representing a
diversity of malware intentions.
Contributions. 1) We introduce Chatter, a system for
malware analysis and classification based on inexpensive
order-based behavioral features. We argue for various
deployment scenarios, and address operational needs. 2) We
demonstrate the operation of Chatter over various malware
families using only the network interface for the source
of behavioral artifacts. For this evaluation, we rely on
manually produced labels. We demonstrate that Chatter is
capable of accurately identifying malware family in a binary
classification context. This is achievable even when limiting
the number of features below a quantity commonly used in the
related literature. 3) We demonstrate an in-depth analysis of
Chatter across multiple evaluation criteria and outline various
open directions.

This paper builds on our work in [24]. While the paper
at hand is almost entirely rewritten, and borrows very little
text from [24], it also incorporates new motivation, new
threat model, use model, and preliminaries, new system
description, and new and enhanced experiments and analysis.
In particular, we updated sections 1, 2 and 4–7, while adding 3
to outline threat and use models. Technically, this work’s
extended contribution is towards methodical experiments and
validation: unlike our prior work [24] where we study the
performance of Chatter in isolation using fixed-length n-gram
features, in this work we systematically evaluate Chatter with
network features only, using fixed length n-gram, combined
grams, and utilizing feature selection for boasted performance
(as explained in sections 5.4 and 5.5; with performance gain
of more than 20% in accuracy). We finally evaluate our
system over a dozen malware family; section 5.2, as opposed
to three families in [24].
Organization. The organization of this paper is as follows.
We introduce the related work in section 2, preliminaries in
section 3, the design of Chatter in section 4, its evaluation
in section 5, and a discussion in section 6. We sum up with
concluding remarks in section 7.

2. Related Work

The literature is rich with work on malware analysis and
classification [3, 13, 25–33]. Broadly, the literature is divided
into two schools of thought: signature based and behavior
based techniques, with our work belonging to the latter, and
most similar in nature to [13, 27, 28, 34]. These works and
others can be organized according to their relationship with
techniques utilizing: machine learning for malware, general
behavior-based analysis, memory signatures, network-related
features, evasion prevention, n-grams, and event ordering. In
the following, we elaborate on this research.
Machine learning for Malware. Machine learning tech-
niques have been used to automate classification of codes
and network traffic in the literature, with hundreds of related
studies. The reader can refer to recent surveys in [35] and [22]
for the related work in this domain.

Behavior-based Analysis. There has been a large number of
studies on using behavioral artifacts for malware analysis and
classification [19, 26, 36–38]. The work of Bailey et al. in [26]
has motivated many of the related works on behavior-based
malware classification. In [13, 27], the authors use similar
techniques for extracting features and leverage support vector
machine (SVM) for classifying malware samples. Our work
distinguishes itself in two respects. Although we share
similarity with their high-level features, our system relies on
the order of events, which exposes richer behavior. Second,
we use analyst-vetted labels for evaluation, whereas the other
authors use heuristics over antivirus (AV)-returned labels.
Traffic analysis. Related to our use of network features is
a line of research on traffic analysis for malware and botnet
detection. Such works include [39–44], with others paying
particular attention to the use of fast-flux techniques [45–50].
Support for our use of DNS features for malware analysis
comes in [51–53]. None of those studies IS concerned
by behavior-based analysis beyond the use of remotely
collected network features for inferring malicious activities
and intention. Our system operates at network interface
granularity to extract malware intelligence.
Evasion detection. Lanzi et al. introduced K-Tracer [54]
for extracting kernel malware behavior and mitigating the
circumvention of loggers deployed in the kernel by rootkits.
In [55], MacBoost is used for prioritizing malware samples
by distinguishing benign and malicious code segments. A
system to prevent drive-by-malware based on behavior,
named BLADE, is introduced in [56]. A nicely written survey
on such systems and tools is found in [57].
Leveraging n-grams. Using n-grams for malware classifica-
tion is not new. However, work in the literature has looked at
extracting features from executables (e.g., sequences of bytes
in the binary files [27]) or streams of communication traf-
fic [58]), but not a higher-level sequence of events occuring
while executing a malware sample. Other examples of low-
level granularity attempts can be found in [55, 58–60]. Of par-
ticular interest is the concurrent work in [58], which derives
n-gram network features for purposes of intrusion detection.
Using network artifacts for identification of malicious activ-
ities, like botnets, is investigated in [41–43, 61, 62]. Further
applications of characterizing malicious domain names using
network traffic and artifacts (DNS queries, among others) are
reported in [31, 53, 63].

Mariconti et al. [19] proposed MaMaDroid, an Android
malware detector that builds a behavioral model from
sequences of abstracted application programming interface
(API) calls that are performed by an app as a Markov chain.
While MaMaDroid does not specifically use the n-grams, it
has the same effect in capturing the order of events (here API
calls). Similar is the work of Shen et al. [64], where n-grams
are used over data flows to identify the sub-flows order.
Event ordering The basic idea of event order to
characterize processes was first explored by Forrest et al. in
their seminal work [23]. There, it was demonstrated effective
for the detection of process-level intrusions. However, that
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work differs from ours in three respects: (1) It is concerned
with detection rather than classification, (2) it uses system
calls rather than networks features, and (3) it uses whole
sequences as a single feature that is easy to manipulate, rather
than sub-sequences (as in n-grams) and their frequency.

3. Preliminaries

3.1. Use Model

Chatter adopts dynamic (network) analysis approach, as
opposed to static analysis approaches, to classify malware
using network traces that are collected by running the
binaries in a sandboxed environment. In other words, and
in its operational mode, Chatter does not rely on host-
based artifacts to characterize the behavior of malware,
rather it passively collects network traffic that is generated
from the hosts to synthesize malware behavioral patterns.
Because this approach is less invasive, Chatter reduces the
risks of intentional evasion whereby malware samples may
attempt to inject unnecessary artifacts in their behavior to
fool the dynamic analysis. Notice that the injection of such
random artifacts, by either randomizing the behavior of the
malware or inserting unnecessary behavior, is possible, and is
addressed by Mekky et al. [65].

Chatter consists of the bare-metal host(s) that run in a
segregated (demilitarized) network that is connected to the
Internet. A typical host would have processes associated with
various activities including software updates, web traffic,
and peer-to-peer traffic. Initially, these hosts are clean and
only generate regular traffic, and each host is infected with
only one malware for analysis and is reinitialized to clean
state for every infection. In addition to the analysis hosts,
a monitoring appliance is installed at key points on the
network with a mirrored interface and network traffic is
collected on the wire and analyzed to perform detection and
classification of malware. To the observer on the wire, the
whole traffic could be blended from multiple sources that
include regular (background) traffic generated by the hosts
and traffic generated by the malware samples. If the blended
traffic is linearly mixed, then it is sent to a filter module that
uses independent component analysis (ICA)[65] to separate
malware traffic from background traffic. This step is taken
before feature extraction and classification.

3.2. Threat Model

We assume an adversary in the form of a malicious software
that is used to disrupt the operation of computer systems.
Chatter is at heart a profiling system that relies on the
behavioral artifact. Thus, while the adversary’s goal is to
remain stealthy, we assume a certain level of behavior that
can be used for extracting features of such an adversary.
For the purpose of this study, we assume that the behavioral
artifacts generated by the adversary are unmixed with other
sources of behavior. We assume that addressing such mixed

behavior, where prevalent, is a secondary goal worth a
separate investigation [65].

While the adversary could be aware of the defender’s
capabilities, including the machine learning techniques, the
feature set, and the associated parameters, the adversary
operates under certain constraints of achieving an end-goal,
an attack that would ultimately result in behavioral artifacts
used for its profiling. To this end, while the adversary may
try to circumvent the system by manipulating the feature
set to break the classifier, the defender would be aware of
such a behavior to incorporate in further learning. Finally,
of particular interest to our study is an adversary that relies
on network artifacts for his operation. In particular, Chatter
would operate best when such network artifacts are prominent
in the behavior of the adversary. Malware that does not use the
network, e.g., air gap malware, falls out of the scope of this
work. From our use and threat models, we exclude the case
where malware uses tunneling of encrypted traffic. Despite
continued increase of SSL/TLS-based malware families [66,
67], however, the majority of malware families (about 80%)
still do not rely on encryption, so we only deal with the
samples which do not generate encrypted traffic in this work.

3.3. The n-Gram Model
In the following, we review the bases of the n-gram model.
Interested readers should refer to [68] for more details.

Let C = {c1, c2, c3, . . . , c`} be a set of ` unique characters
corresponding to the alphabet in a language L. A collection
of characters c1c2c3 . . . cs, where ci ∈ C for 1 ≤ i ≤ s, is said
to be a sequence if this collection is ordered where repetition
of elements is allowed. A word w is a sequence c1c2c3 . . . ,
where the length of w is the number of characters in it. A
document D is defined as a collection of words w1w2 . . . wd .
Based on that, L is defined as a system for communication
based on words and a combination of them. Both characters
and words are elements (tokens) in documents (strings).

The n-grams are collections of adjacent elements in a string
of tokens with the length of n. Notice that this definition
is general, and it captures n-grams defined for both words
and characters in robustly defined documents (strings) from a
language L. n-grams can be used to compute the probability
of a token when the preceding token is given, using the chain
of probability P (c1c2c3 . . . cs) defined as:

P (c1)P (c2|c1)P (c3|c1c2) . . . P (cs |c1 . . . cs−1) =
s∏
k=1

P (ck |c1 . . . ck−1).

For a bigram, we have P (cs1) =
∏s
k=1 P (ck |ck−1). Similarly,

we define the probability approximation for n-gram as
P (cs1) =

∏s
k=1 P (ck |c

k−1
k−n+1), where the conditional probabil-

ities are estimated using the relative frequency in D as:

P (cs |cs−1) ≈
C(cs−1cs)
C(cs−1)

, P (cs |cs−1s−n+1) ≈
C(ccs−1s−n+1

cs)

C(cs−1s−n+1)
(1)

One way for building a feature vector for representing a
certain abstraction using L is through the above probability
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estimation. Alternatively, we can calculate the probability
directly by scanning through D to find all grams that meet
the definition above for the given length n. Defining words
over behavioral artifacts is possible, as examined in [65] using
the same toolsets used in this paper. However, in this paper,
and for the development of Chatter, we limit our attention
to the case where behaviors are at the character level: we do
not group those behavioral artifacts and consider the entire
documentD as a single word with as many characters as there
is in the original behavioral profile.

4. System and Design

Chatter characterizes malware samples by executing them,
using this intelligence for training purposes. For online
operation, this capability is not required. We proceed by
discussing Chatter’s design goals and then detailing how these
are achieved in practice.

4.1. Design Goals and Requirements

In developing Chatter, we have several idealized functional
and non-functional goals in mind. In particular, we develop
Chatter so that it is cost-effective, less invasive, generalizable
and multi-purpose, robust to behavioral changes, and
accurate. In the following, we elaborate on each of those
goals.
Cost effectiveness. Feature extraction should be computa-
tionally inexpensive, particularly in online operation. This
cost effectiveness can be achieved by either limiting the
number of classes of artifacts used for characterizing malware
to a smaller set (e.g., network only, as opposed to fully-
fledged systems such as AMAL [17], which uses artifacts that
pertain to network, memory, file system and registry usage)
or by deriving shallow features across multiple classes. In
Chatter, we emphasize the first approach by limiting ourselves
to network features only.
Less-invasiveness. While possible to analyze malware in
instrumented and virtualized environments, which is the
approach we follow for building a baseline, it is desirable to
collect such artifacts while running on the “natural” host OS.
A system that can be deployed externally to observe malware
is ideal. We keep in mind that this is only a design objective
for the final system, not necessarily a requirement on how that
system is arrived at.
Generalizable and multi-purpose. While the stated goal of
Chatter is to characterize malware samples by their behavior,
the system should be flexible enough for re-purposing outside
the malware realm. In Section 6.3 we show two such
applications that benefit from such generalized capabilities.
Robust to behavioral changes. Given that many malware
families evolve over time to circumvent behavior-based
techniques, one goal of our system is to resist this evolution
by providing flexible and longitudinally-aware techniques.
Accurate. An ideal system for malware classification should
aim to provide the greatest coverage while minimizing false
positives. As such, when designing Chatter, we consider

operationally acceptable accuracy within other optimizations
(such as cost-effectiveness) of particular importance.

4.2. System Workflow and Operation

Chatter’s overall workflow is visualized in Fig. 2. In
describing this workflow we begin with our sandboxed
execution environment and its output. We then describe
how this output is transformed to make use of the n-gram
technique to create a feature vector for each malware sample,
which is then used for training a model to classify various
species of malware in an automated manner. We note that any
sandboxed execution environment (or bare-metal execution)
can be used for extracting the features used in Chatter. We
use our proprietary system named AutoMal, and described in
greater depth in [69]. AutoMal requires very little effort to be
repurposed as the dynamic execution component of Chatter.
AutoMal is a Windows-based system capable of collecting
low-granularity artifacts speaking to how malware samples
interact with memory, file system, registry, and network
interfaces. AutoMal takes as input binaries that are likely to
be malware. It consists of 4 components: submitter, controller,
workers, and back-end storage. Input samples are queued
until resources become available. The controller initiates
virtual machines (VMs), loads configurations, and runs the
malware sample. Once execution is completed the collected
artifacts are logged in the back-end storage unit.

Sandboxed Execution. Chatter starts its operation by
ingesting malware samples (provided by analysts as part
of their research activities in security operations, customers
interested in understanding classes of malware, or obtained
from malware feeds of antivirus scanners [69]), as shown
in step 1 in Fig. 2. Given the limited resources and large
number of samples at any point of time, our sandboxed
execution environment (part of AutoMal [69]) has a controller
that checks for available VMs in the system (or a bare-
metal units) for executing samples from the malware samples
queue. If a VM (or bare-metal unit) is available, the controller
runs this VM with a set of configurations provided by the
analyst and executes the malware sample in the VM. The
configurations are passed as a high-level script by the analyst:
those configurations determine the operating system used in
the VM, the virtual devices and resources associated with
the VM, the software packages and programs installed in
the VM, etc.). Upon executing the malware sample for a
certain amount of time, as shown in step 2 in Fig. 2, our
fully-fledged system collects a variety of dynamic execution
features. Those include memory artifacts collected by various
memory forensics and analysis routines (e.g., memory access,
memory deletion, memory modification, size of reads and
writes, utilized address space, etc.), file system artifacts (e.g.,
counts and content-related artifacts of files read, written,
deleted and modified), registry artifacts (e.g., similar to the
file system artifacts), and network artifacts. The amount of
time a sample is executed is determined by an analyst based
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Table 1. Events used in composing the behavioral
documents of malware samples.

Event class Component events

IP and port unique dest IP, certain ports
Connections TCP, UDP, RAW
Request type POST, GET, HEAD

Response type response codes (200s through 500s)
Size request (quartiles), reply (quartiles)

DNS MX, NS, A records, PTR, SOA, CNAME

on several considerations, including a high-level notion of
malware type and performance requirements

Because Chatter only relies on one class of artifacts,
namely network artifacts, AutoMal is repurposed where only
network artifacts are considered, as shown in step 3 in
Fig. 2. Those network artifacts are collected and indexed
with the order of their appearance in the execution of
the malware sample using timestamps. Among the network
artifacts collected by Chatter, we mainly considered high-
level header-based artifacts shown in Table 1. Those artifacts
are mainly header-based, which means that they can be
quickly obtained in real-time while executing the malware
sample. We note that other deeper features from the contents
(payload) of the network artifacts could also be utilized,
although we avoid using such artifacts simply because due
to efficiency and scalability reasons.

The artifacts in Table 1 consist of multiple classes,
including IP and port, connection (type), request and response
(type), size information, and DNS-related features. For ports,
we focus on a set of ports that are mostly utilized by malware
samples in our analyzed feeds, some of which are generic
services (e.g., ports 20, 21, 22, 25, 53, 80, 102, 110, 143, 389,
443, 465, 587, 636, 993, 995, 6665, 6347, 6679, 6697, and
8080 are used in our analysis). The rest of the (type) artifacts
are as highlighted in Table 1, whereas the size information
is highlighted in quartiles (see [69] for more details). In
short, we define the size of a flow (request or response) as a
number between 1 and 4 (inclusive). This number depends on
which quartile the size of the flow fits within. The quartiles
are computed over all the flows (requests and responses)
associated with the execution of malware samples.

Behavioral Documents. Chatter abstracts the raw
network behavior and artifacts obtained in step 3 in Fig. 2 to
compose a “behavioral document.” The behavioral document,
as shown in step 4 in the same figure (for illustration
purpose only), is simply an abstracted representation of the
network artifacts to simplify their processing. To compose the
behavioral document, we start with the network artifacts, and
by fixing set of “events” (in advance) as shown in Table 1,
we map those events into a set of unique characters in an
arbitrary alphabet. Then, using the network artifacts in step
3 we replace each event with the corresponding character

to obtain a simplified representation of the network artifacts
that preserve the order of the events. For example, in step
4 in Fig. 2, DNS query (of, say, MX type) is mapped to
d, an HTTP request (of, say, type GET) is mapped to h,
and so forth. By mapping the corresponding appearances of
the events in the set in Table 1 to the corresponding unique
alphabet for the network behavior of a malware sample (and
discarding unmapped behavior), we obtain the “behavioral
document”, as shown in Fig. 2.

n-gram Tokens. The next step in the operation of Chatter
is the extraction of n-gram tokens from the behavioral
document using the n-gram technique in section 3.3. By
taking as an input a parameter n, Chatter calculates the tokens
of length n in the behavioral document, such that those tokens
consist of adjacent characters in the behavioral document. For
example, as shown in step 6 in Fig. 2, by starting with a
behavioral document of dhrhrhrd, and for n = 3, Chatter
calculates the following tokens as the output of the n-gram
extraction component: dhr, hrh, rhr, hrh, rhr, and hrd.

n-gram Features. To extract features to represent a
malware sample, we use the frequency of n-gram tokens
obtained in the previous subsection and as illustrated in step
7 in Fig. 2. For instance, for the sample above, we build an
index of the unique tokens and take the count over those
tokens as the feature vector. Namely, for the same example,
the index calculated over the tokens is [dhr, hrh, rhr, hrd,
. . . ] with a feature vector of [1, 2, 2, 1, . . . ]. Note that the
index is calculated over the superset of tokens that appear in
the execution of all malware samples. Furthermore, an index
and feature vectors could be constructed from the union of
multiple grams (e.g., for an arbitrary n, we may consider the
index of the feature vector as only the unique grams of length
n, or all unique grams with a length less than or equal n; we
elaborate more on the choice of the feature in the evaluation).

4.3. Machine Learning Subsystem
The main purpose of Chatter is to provide means for
automated malware classification using the behavioral
features obtained through dynamic execution. To this
end, Chatter supports various supervised machine learning
algorithms for classification. Starting with a golden labeled
dataset, Chatter builds a model utilizing the malware features
extracted in the previous section. Upon validating the model
using standard cross validation and accuracy measures,
Chatter then uses the built model to classify malware in the
wild to a family of interest. A simpler task that we also
examine in the evaluation is the power of Chatter of detecting
malware (this is, the classification of software into two classes
of malicious and benign). In the following, we elaborate
on the machine learning component of Chatter, including
procedures and algorithms.

Building Ground Truth. Devising methods for building
ground truth as an open question in the security research
community in particular and the machine learning in general.
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Figure 2. Chatter’s sandboxed execution and feature extraction utilizing the network profiling in AutoMal and n-
gram-based features extractor.

Methods that rely on manual inspection do not scale, whereas
automated signature-based methods that utilize antivirus
scanners and labels are susceptible to inaccuracies and
incompleteness. Fortunately, and as part of our security
operations, manually-assigned names and labels of malware
samples were given utilizing the variety of manual analysis,
reversing, and memory signatures. While the method is costly,
if it is to be used only for the operation of Chatter, such
ground truth is obtained independently. We use this ground
truth (more details in the evaluation). However, any other
reliable ground truth source (that could potentially improve
over antivirus scanners) can be utilized for the operation.

Training and Validation. The task that Chatter tries to
achieve is a binary classification: telling if a malware sample
belongs to a malware family (or a class label) of interest
or not. Given a set of malware samples represented by
their feature vectors as extracted in the previous section and
the corresponding labels for each sample, Chatter builds a
model for the class of interest and other families (collectively
represented as a second class; in malware detection, such a
class corresponds to benign software). The model is trained
(built) using part of the dataset and validated using the rest of
the dataset. Independent of the algorithm used for building the
model (detailed in section 4.3), Chatter uses the k-fold cross-
validation method for building the model, thus addressing the
problem of overfitting. For evaluating Chatter, we use the
k-fold cross-validation method with k = 10. In this method,
the input dataset is divided into k-folds, where k − 1 folds
are used for training the machine learning algorithm and the
remaining fold is used for testing. The process is repeated k-
times by changing the testing dataset among the k possible
folds. At the end, the result of the classification algorithm is
computed as the average over the k runs. We set k = 10 due
to its common use.

Upon training the model and testing it, and further
establishing a confidence in the model, the underlying
features, and the used parameters in the algorithm, we use the
model in the wild for classifying (or detecting) malware. This
is, we assign a label to a malware sample with the unknown
label based on the determination made by our model for the
given algorithm (details of how such determination is done is
the testing phase of the algorithms in the next section; 4.3).

Machine Learning Algorithms. Three machine learn-
ing algorithms are supported by Chatter: 1) the k-nearest
neighbor (k-NN), 2) support vector machine (SVM), and 3)
decision tree classifiers. All three algorithms are intended for
binary supervised learning and are capable of identifying the
membership of a malware sample into one of two classes.
Details on the operation of those algorithms are provided
below for the completeness of our presentation of Chatter.
Support vector machines (SVM). Given a training set
of labeled pairs (xi , yi) for 0 < i ≤ `, xi ∈ Rn, and yi ∈
{1,−1}, the (L2-regularized primal) SVM solves the
following optimization: minw,b,ξ

1
2w

Tw + C
∑`
i=1 ξi subject

to yi(wTφ(xi) + b) ≥ 1 − ξi , ξi ≥ 0, where the training
vectors xi are mapped into a higher dimensional space
using the function φ, and the SVM finds a linear separating
hyperplane with the maximal margin in this space. C > 0 is
the penalty parameter of the error term (set to 0.01 in this
work). ξ(w, x, yi) is called the loss function, where we use
the L2-loss defined as ξ(w, x, yi) = max(1 − yiwT xi , 0)2.
Decision trees. In evaluating Chatter, we utilize a single
split tree for two-class classification using all of the features
provided by Chatter. In particular, we use a small variation
of the C4.5 algorithm. For a target class label Y = y1, . . . , yn
(here, n = 2) and a set of feature vectors x1 . . . , xf , at each
internal node of the tree we apply a test to one of the inputs,
namely xi , determining whether to go left or right in the tree
branches based on the outcome of the test. When running
over all of the training feature vectors, we mark the leaf
nodes as the aggregate (mean) of all the training samples (to
one of the class labels in Y ). For testing, we do the same
and assign the label of the leaf to that of the sample feature
vector used to reach the leaf. There are variations of decision
trees in the literature to provide better results (e.g., random
forests). We did not try any of those techniques since this
technique provided reasonable results. We leave integration
of such techniques as future work.
The k-nearest-neighbor. The k-NN is a non-linear classifica-
tion algorithm. In the training phase, we provide the algorithm
two labels and a set of training samples (that are simply stored
for the testing phase). In the testing phase, for each sample
vector a, we assign the label most frequent among the training
samples nearest (using the Euclidean distance) to a. We refer
the reader to a textbook explanation of the technique in [70].

7
EAI Endorsed Transactions Preprint



A. Mohaisen, O. Alrawi, J. Park, J. Kim, D. Nyang, M. Mohaisen

5. Evaluation
To evaluate our work we begin by describing the malware
samples utilized and how ground-truth is produced. This data
is put through the Chatter workflow and feature vectors are
computed. We then apply our machine learning technique
of choice, producing evaluation metrics which are then
interpreted with respect to system performance.

5.1. Ground-truth and Labeling
Labeling malware to establish a ground-truth is an important
step in any supervised classification task. Prior literature
relies heavily on family labels and names provided by anti-
virus scanners. Several recent works [22, 26, 71] have shown
such scans to be unreliable. This is understandable to some
extent, as these AV scanners are often designed with the
primary goal of distinguishing malware from benign code –
not distinguishing between malware families.

To this end, the malware samples we utilize have been
collected over a considerable period of time, enabling expert
analysts in Verisign’s organization to manually identify and
label them. This process is time-consuming; a previously
unseen malware sample averages 10+ hours of manual
characterization. However, family discovery is done in
parallel with other important tasks. This time is not spent
analyzing the binary just for this research initiative. Instead,
Verisign analysts are contracted by customers to produce
detailed reports on the modus operandi of a malware sample.

In addition to customer submitted binaries, partnering anti-
virus vendors and analyst’s research endeavors also contribute
to our malware repository. Yara signatures [72] are sometimes
applied to weed out irrelevant samples and a system called
AMAL [69] is applied to characterize samples from well-
understood families. We emphasize that the majority of
samples used in this study come from customers, where
manual efforts are used for the labeling of samples.

5.2. Dataset and Malware Samples
For the evaluation of Chatter, we use 11 malware families
used in [8]: Avzhan, Darkness, Ddoser, Jkddos, N0ise, Shady
RAT (SRAT), DNSCalc, Lurid, Getkeys, ZeroAccess, and
Zeus. As we will soon describe, these families cover a
wide range of network behavior. Our system is applicable
for all malware families and our proof-of-concept selection
is for demonstration purposes. Subsequent to the analysis
described herein, we also ran our system on other families,
including Ramnit, Bredolab, SillyFDC, and Virut. The
systems’ operation and accuracy during these larger trials
were consistent for the results we present for our 11-family
experiments.

Each malware sample in these families is obtained from an
operational product, where sources of the malware samples
include Verisign customers, partnering antivirus vendors, and
researchers. Once the malware samples are fed into AutoMal
they are executed for a fixed amount of time to generate
artifacts. Table 2 reports on the quantity of the sample we

Table 2. Malware families used in the evaluation of
Chatter, including set size and the average number of
events per execution trace.

Family Quantity Ch. Avg. Description

Avzhan 3458 70.31 Commercial DDoS bot
Darkness 1878 61.47 Commercial DDoS bot

Ddoser 502 57.51 Commercial DDoS bot
N0ise 431 77.13 Commercial DDoS bot

Jkddos 333 120.3 Commercial DDoS bot
Shady RAT 1287 52.74 targeted; government and corps

Getkys 953 63.04 targeted; targets medical sector
DNSCalc 403 82.37 targeted; US defense companies

Lurid 399 50.41 targeted; initially targeted NGOs
Zeus 1975 50.74 Banking, targets credentials

ZeroAccess 568 49.93 Rootkit, monetized by click-fraud

virtualized and the average document length that resulted. To
foster transparency and reproducibility of results, we release
the dataset used in this work to the larger community. We note
that the different families in our dataset belong to one of three
classes: DDoS, targeted, or mass-market malware.

For every malware family set, we also have an equally-
sized sample of random malware samples drawn from
an expansive malware repository. In our proof-of-concept
evaluation, we, therefore, treat family membership as a binary
classification task. We now discuss each of these families in
greater depth:
� Zeus. One of the Trojans that attack financial sector
through stealing information from the infected computers. To
steal credentials, this Trojan hooks Windows API functions
responsible for the communication between clients and the
bank’s website and modifies the returning results to hide its
activities.
� Avzhan. The DDoS botnet that was first reported
in 2010 [73]. This botnet is similar to IMDDos, a
Chinese process-based botnet announced by Damballa
around September 2010 [74], where both families can be
commercially hired to attack targets of interests. The owners
of the botnet claim on their website that their botnet
can strictly be hired to attack non-legitimate websites, for
instance, gambling sites.
� Darkness. a.k.a. Optima, is a commercial malware family
developed by Russian criminals and released in 2009. As
of the end of 2011, the 10th generation of this bot was
released. This malware performs several functions, including
launching DDoS attacks, stealing credentials and using
infected machines for launching traffic tunneling attacks [75].
� DDoSer. a.k.a. Blackenergy, was reported and analyzed in
2007 [76], is a DDoS malware that is capable of performing
HTTP DDoS attacks. This malware is unique in the sense that
it can target more than one IP address per DNS record.
� JKDDoS. Malware that targets the mining industry [77].
The malware was first reported by Arbor Networks in 2011,
and its first generation was observed in September 2009.
� N0ise. The DDoS tool used to recruit other bots to
attack victims using HTTP, UDP, and ICMP flood, among
other methods. Other functionalities of this tool include
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stealing credentials and downloading and executing other
malware [78].
� ShadyRat. is a targeted malware that is used to steal
sensitive information like trade secrets, patent technologies,
and internal documents. The malware employs a stealthy
technique when communicating with the C2 by using a
combination of encrypted HTML comments in compromised
pages or steganography in images uploaded to a website [79].
� DNSCalc. a.k.a. APT12, is a malware is targeted towards
research sector, where it steals sensitive information through
using the responses from the DNS request to calculate the IP
address and the port number used for communication [80].
� Lurid. Malware that targeted US government and non-
governmental organizations (NGOs), although it seems that
there is no relationship between the targets indicators. This
perhaps implies that the malware family is being used
commercially as a hit man [81]. Three hundred attacks
launched by this malware family were targeted towards 1,465
victims and were persistent via monitoring using 15 domain
names and 10 active IP addresses.
� Getkys. a.k.a. Skyipot, is a single-stage Trojan that
targets aerospace, defense, and think tank organizations,
through running and injecting itself in three targeted
processes: outlook.exe, iexplorer.exe and firefox.exe. This
Trojan communicates via HTTP requests and uses two
unique and identifiable URL formats, such as the string
“getkys” [82].
� ZAccess. a.k.a. ZeroAccess, is a rootkit-based Trojan that
targets most Windows OS and was reported first by Symantec
in July 2011. The Trojan is mainly used to enable other
malicious functions on the infected machine based on a pay-
per-click advertising model. ZAccess is generally used to
download other malware, open backdoors on the infected
machines, among other functions [83].

5.3. Feature Space and Space Reduction

Running a malware sample in a sandboxed environment
results in many artifacts and large PCAP files. Not all of
these artifacts and the associated features are relevant nor
meaningful in identifying a malware sample. Thus, we rely
on expert domain knowledge to identify the network-related
events of interest. To this end, Table 1 highlights some of the
26 network-related events used in our analysis. Per Table 3,
we observe that some events do not occur for some families
(e.g., n = 1) and far greater unique combinations of events
never occur (e.g., where n > 1 there is no permutation-scale
growth). This makes empirical the advantages of using the
sparse feature representation. For example, when n = 8 our
feature vector needs only ≈ 3,800 entries (the size of the
feature space), rather than the 2.0811 entries needed for
exhaustive representation of all combinations when n = 8.

5.4. Evaluation Metrics and Scenarios

For a binary classification problem, in which it is required
to determine if a given malware sample belongs to the class

Table 3. The number of unique n-grams actually
observed in each of the studied families for varying
values of n.

Family / n 1 2 3 4 5 6 7 8

Avzhan 24 102 248 476 910 1506 2304 3252
Darkness 24 103 243 461 875 1503 2266 3149

Ddoser 26 107 250 491 900 1606 2636 3776
N0ise 24 106 249 480 891 1678 2264 3626

Jkddos 25 103 244 469 941 1703 2307 3122
SRAT 25 105 247 460 877 1536 2337 3300

Getkys 24 102 242 470 893 1659 2277 3364
DNSCalc 26 107 249 468 907 1578 2292 3379

Lurid 25 103 243 467 956 1539 2354 3130
Zeus 24 102 250 481 943 1690 2638 3794

ZeroAccess 26 108 250 489 913 1520 2306 3368

of interest S or not, we define the following possibilities:
(1) True positives (Tp) are those samples correctly identified
by the machine learning algorithm to belong to the class
S. (2) False positives (Fp) are those samples incorrectly
marked by the machine learning algorithm to belong to S.
(3) True negative (Tn) are those samples marked by the
machine learning algorithm correctly not to belong to S.
(4) False negative (Fn) are those samples incorrectly marked
by the machine learning algorithm not to belong to S (they
are actually in S). Using these outcomes and associated
magnitudes, the precision, recall, accuracy, and F1 score are
defined as:
– Precision (P) = Tp/(Tp + Fp),
– Recall (R) = Tp/(Tp + Fn),
– Accuracy (A) = (Tp + Tn)/(Tp + Tn + Fp + Fn),
– F1 score (F1) = 2 × (P × R)/(P + R).

In the subsequent analysis, we scale all evaluation metrics
to a percentage range by multiplying the result by 100.
Scenarios. In experimenting with Chatter, we consider the
following scenarios. 1) Using all features resulting from the
n-gram representation for a given n. 2) Using the combination
of all features resulting from the n-gram, inclusive of all
features with a gram of size less than or equal to n; this is,
when a given n is used the feature set would include, grams
of size n . . . 1. 3) Using the top significant features selected
using the recursive features selection (RFS). RFS takes in two
inputs, k value, indicating the number of features desired, and
n features. RFS generates n − 1 models by removing 1 feature
from the n features, then evaluates each n − 1 model, then
selects the best performing model. The process continues m
steps until k = n −m. 4) Using multiple algorithms on the
same set of features to understand the impact of different
algorithms on the performance of our classifiers.

5.5. Quantitative Results
We now present results from our evaluation. This section
consists primarily of quantitative results, whereas later
sections analyze and discuss these results in greater depth.
Results in isolation: For this evaluation, we use three
families that represent the three different malware classes
in our dataset: Zeus (mass-market), Darkness (DDoS), and
ShadyRat (targeted). The main purpose of this experiment
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Figure 3. Performance measures for the Shadyrat
malware family with network artifact classification using
Chatter atop a baseline classifier
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Figure 4. Performance measures for the Darkness
malware family with network artifact classification using
Chatter atop a baseline classifier

is to understand the power of various machine learning
algorithms and parameters when studying our datasets and
preliminary features in isolation. Thus, we start with n =
1, which corresponds to the bag-of-words method in the
literature [17], the three aforementioned machine learning
algorithms, the four evaluation metrics, and the three malware
families. The results are shown in Figs. 3, 4, and 5.
Among other observations, we notice the following. First,
the performance, across all evaluation metrics, of the baseline
feature is insufficient in almost all cases of malware families.
Second, the performance of our baseline experiment varies
greatly across families, and best results across all evaluation
metrics is obtained with mass-market malware (Zeus),
followed by DDoS malware (Darkness), then by targeted
malware (ShadyRat), which is unsurprising pattern that holds
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Figure 5. Performance measures for the Zeus DDoS
malware family with network artifact classification using
Chatter atop a baseline classifier

for other malware families as verified through our analyses.
Third, across all experiments, we notice that SVM provides
the best results across all evaluation metrics, and the ranking
of the two other algorithms is inconsistent and depends on the
family studied. However, in all cases, the difference between
the different algorithms is insignificant.

Based on the baseline established in the first observation,
we pursue the study of the impact of the n-gram features,
and how they impact the performance of classification. Based
on the third observation, we limit our attention to the SVM
as the algorithm of choice when studying the impact of
the n-gram parameters on the performance of classification.
For the lack of space, we also only evaluate our system
based on its accuracy. In the subsequent analysis, we perform
classification for all of the eleven malware families in our
dataset.

Evaluation using individual n-gram features. In this
experiment, we focus on how using the new set of n-gram
features affect the performance of the classifier. For this
experiment, we use the SVM as the classifier of choice, for
its better performance in the previous experiments. We study
the performance over all families. In running Chatter, we
use individual features resulting from using the parameter n.
Where n is fixed, only features of n consecutive events are
used in our feature vector. Results are shown in Table 4. Based
on those results, we make two observations. First, there is a
monotonically increasing trend in the accuracy of the SVM
classifier with the increase of the parameter n, even without
features selection. This improved performance is clear across
the board. Second, we notice, by experimenting with the 11
families in our dataset, a consistent ranking of the power of
network-based features in general, and Chatter in particular,
in profiling, characterizing, and detecting mass-market and
DDoS families than the targeted families. This insight is
further highlighted in the ordering of three sample families
belong to each class, in Fig. 6.
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Figure 6. The accuracy of classifying various malware
families with varying n.

Table 4. Accuracy of classifying various families for
different values of n when calculating the n-gram
individual features.

family / n 1 2 3 4 5 6 7 8

Avzhan 74.2 74.8 76.5 76.7 78.7 83.5 86.0 91.2
Darkness 81.1 81.4 83.4 85.2 85.8 86.5 86.8 87.6
Ddoser 84.1 84.9 85.6 86.5 92.8 93.5 93.7 94.1
N0ise 88.0 88.1 88.8 89.2 90.7 91.8 91.8 92.4
Jkddos 75.4 76.1 79.1 85.2 85.3 85.6 85.9 87.7

ShadyRat 62.1 62.8 67.5 68.6 75.3 79.0 80.3 82.9
Getkys 72.9 72.9 73.2 74.8 75.8 77.0 78.5 79.8

DNSCalc 75.7 77.0 78.2 78.4 79.4 81.3 83.5 84.4
Lurid 66.5 67.3 68.2 69.7 76.5 77.5 77.7 85.7
Zeus 91.2 91.2 91.4 92.6 92.8 93.5 93.6 94.2

ZeroAccess 83.3 83.8 84.6 84.8 89.7 91.6 92.9 93.0

Table 5. Accuracy of classifying various families for
different values of n when calculating the n-gram
combined features.

family / n 1-2 1-3 1-4 1-5 1-6 1-7 1-8

Zeus 93.2 93.5 93.9 94.0 94.1 95.3 96.2
ZeroAccess 84.9 85.2 85.3 90.6 94.1 94.5 95.2
ShadyRat 63.2 68.2 71.2 75.7 79.4 82.8 85.8

Getkys 74.7 76.1 76.7 77.3 78.2 79.8 82.6
DNSCalc 78.3 79.4 79.9 80.7 84.2 85.4 86.0

Lurid 69.0 70.0 71.2 78.1 78.9 79.2 88.4
AVZhan 77.3 79.1 79.4 81.3 83.9 87.5 93.2
Darkness 83.7 83.9 86.6 86.8 87.6 88.7 89.8
Ddoser 86.4 86.5 88.6 93.7 94.5 95.4 96.0
N0ise 89.3 90.3 90.5 92.9 92.9 93.1 93.6
Jkddos 78.5 81.0 85.5 85.5 87.9 88.5 89.4

Evaluation using combined n-gram features. In this
scenario, and for a given n, we compile a set of features for
all combinations of events that are consecutive and are of the
length less than or equal to n. For example, where n = 3, we
include features for lengths 1, 2, and 3. The results are shown
in Table 5. Overall, we notice an improved accuracy across
the board in classifying the various families.
Evaluation with selected features. In the following, we
show the results with features selection over the previous
experiment. In particular, we limit our attention to the 10%
top features in each family and compute the accuracy of the
classifier for the different families. The results are shown
in Table 6. Overall, we notice an improvement across the

Table 6. Accuracy of classifying malware families with
varying n values with recursive feature selection.

family / n 1-2 1-3 1-4 1-5 1-6 1-7 1-8

Zeus 94.2 95.2 95.8 96.4 96.5 97.0 98.9
ZeroAccess 85.9 85.9 89.1 93.4 94.5 94.5 95.9
ShadyRat 66.5 69.5 71.4 78.9 83.7 84.5 86.8

Getkys 75.9 76.2 76.4 77.7 80.8 81.6 83.0
DNSCalc 78.9 80.2 81.8 82.4 82.6 85.6 86.2

Lurid 70.0 71.7 74.4 77.2 80.0 82.1 89.6
AVZhan 78.3 79.2 81.9 81.9 87.4 88.4 94.9
Darkness 86.8 87.8 87.9 88.6 89.4 90.4 90.9
Ddoser 88.3 89.9 91.8 96.2 96.8 97.0 97.3
N0ise 91.3 91.9 92.8 93.8 94.4 96.6 97.2
Jkddos 79.1 81.1 88.1 88.4 89.4 90.3 93.6

board. More importantly, we notice a final classification
accuracy of 83%-98.9%, as compared to an initial accuracy
of 62.1%-91.2% (with more than half of the families having
the accuracy of less than 80%). Notice that this improvement
in accuracy is not the only improvement, but also includes a
massive speed-up for the reduction in the number of features
used for classification to only the most significant (10%).

6. Discussion
When n = 1 ordering plays no role, whereas there are
tremendous ordered dependencies when n = 8 (our upper
limit). We observe that malware families tend to peak
in performance when n = 8. This observation is further
validated when combining features and feature selection. The
accuracy graphs in Figs. 3, 4 and 5 show an upward trend as
n grows. We conclude that order does improve classification
by about 7% to 23%.

6.1. Meeting Design Requirements
In the following we highlight how Chatter meets the design
requirements outlined in Section 4.1:
�Cost-effectiveness. Chatter’s cost-effectiveness is two-fold:
(1) It uses only a single class of (network) artifacts, and
(2) It abstracts features from curated event traces rather than
raw interface dumps. Prior literature has shown a system
characterizing malware using only network artifacts can run
an order of magnitude faster than a system that looks at
a large spectrum of features. For example, AMAL [69]
is a fully-featured infrastructure that ideally utilizes 128
virtual machines towards processing 23,000 malware samples
daily. Chatter, on the other hand, could process 370,000
malware samples per day using the same infrastructure. This
number significantly exceeds the sample quantity Verisign’s
operations receive and analyze on a daily basis. Indeed, the
number is also greater than the 250,000 samples a popular
antivirus provider like Sophos detects and analyzes daily [84].
� Less-invasiveness. Using network features makes Chatter
less invasive. The network events can be gleaned on the
network without having to reside on the host machine.
However, this capability is also susceptible to noise from
other system processes using the network interface in parallel
with the malware sample. This could be limited by running
the malware and the host in a monitored mode of operation.
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� Generalization and flexibility. Chatter’s ability to evolve
with malware binaries is straightforward given its operational
context. Because novel malware is being created, analyst
efforts continue to be brought to bear on samples’ reverse-
engineering and analysis. Family labels are a cheap side-
effect of this ongoing demand, resulting in a wealth of expert-
annotated and longitudinal ground-truth that can be utilized
via periodic retraining.
� Accuracy. In isolation, Chatter’s accuracy is less than
that of full-featured systems, e.g., AMAL [69]. However,
we still contend that our performance is operationally
acceptable. The contexts in which one needs to make a
family classification are very different when determining the
presence of malware. Remember also that accuracy can be
improved by using more expensive techniques (possibly as
a second-pass if Chatter’s models indicate low classification
confidence). This work is also interested in the trade-off
between complexity, accuracy, and operational costs.

6.2. System Limitations

We acknowledge various shortcomings of Chatter, and
examine how a knowledgeable attacker could utilize
gamesmanship to circumvent our classification strategy.
Noised features. As with most behavior-based systems for
malware classification, Chatter performs best when malware
samples do not produce extra information to disguise
their behavior and manipulate machine learning algorithms.
However, unlike systems that make use of exact matching
of behavior profiles, Chatter provides some flexibility and
robustness in the grouping patterns based on n-gram features.
The problem is a generic one which we address in two ways.
First, we emphasize that not all the features generated by a
malware sample need to be used by learning algorithm: a
feature selection algorithm can be used to reduce the impact
of the noised features. Second, regardless of injected noise,
certain events in the operation of a malware sample must
happen in the same partial order. Our future work to address
this limitation is to derive features of those events as they
happen in their partial order by filtering out the noise between
them. While this might seem to require a deep understanding
of the studied malware families and their expected behavior,
well-understood signal processing techniques show potential
in this domain.
Adaptive malware. Certain forms of malware are capable of
changing their behavior based on the environment in which
they are run. This creates issues for Chatter as it does for other
behavior-based sandboxes. We address this in two ways:

First, AutoMal, the sandbox environment for Chatter
generates patches to deceive malware samples by providing
registry values indicating execution is occurring on bare
metal. Second, for sophisticated malware that does not
respond to those patches, malware samples are actually run
on bare metal (or using hardware virtualization). Of course,
this a problem specific to the generation of behavior profiles,
whereas actual operation is unaffected by such manipulations.

Continuous training and cost of labeling: Because of the
evolution of malware samples, continuous training is needed
in our system to adapt to changes in artifacts generated.
While this issue might seem an inherent shortcoming for
machine learning based techniques, it is addressed naturally
in Chatter. As mentioned earlier, many of the malware
samples fed into Chatter belong to customers and require
reverse engineering, deep analysis, and manual inspection. To
that end, this process provides a natural venue for obtaining
features, labels, and training sets for Chatter.

Our objective in this work is characterizing a threat model
against Chatter by defining ways where an adversary can
alter the pattern of network traces when running malware
samples in a dynamic analysis environment. An adversary
may alter the sequence of traces in various ways hoping
to confuse monitoring systems and to make the extracted
features less discriminatory, either by injecting new packets
into the network or modifying existing ones or dropping
packets in transit if they can intercept them.

We argue that sensitivity of classification in Chatter is
affected by environmental noise or by malicious actions
intended to poison traces of execution using operations like:
addition, deletion, and modification of behavioral events.
Consequently, an adversary who executes these operations
seeks to record distorted patterns as input to the classifier
and therefore hopes to evade detection by generating faulty
results. We identify potential attacks that can target the
classifier and affect the overall performance of Chatter.
Each of those attacks, while ranging in sophistication, rely
on unique and basic features of the proposed approach
for discriminatory feature extraction. These attacks can be
modeled by simple linear combination attacks or they can be
more sophisticated such as non-linear or spatial attacks.

Linear attacks. With linear attacks, the source of the attack
can be modeled as a linear combination of background
traffic generated from regular hosts (based on web browsing,
software updates, etc.) with network events generated by
the malware sample. Noise in the behavioral sequence can
affect the classifier’s performance and to overcome this
requires either applying a proper filter or use of tight
monitoring in sandboxed environments. However, malware
samples may actually simulate linear noise by injecting
unnecessary artifacts in their behavior to fool the dynamic
analysis, thus mimicking background traffic and evading
detection by simulating multi-blended traffic. Methods such
as independent component analysis (ICA) can be used to
separate linearly combined traffic by analyzing distributions
of features extracted from mixed traces into two estimated
distributions, provided that traffic sources are statistically
independent.

Non-linear attacks. Unlike linear attacks which assume
traffic is linearly mixed, spatial attacks are based on non-
linear combinations of the features that exhibit spatial
distortion properties. Two techniques seemed promising
for defending against spatial attacks, namely: sequence
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alignment and skip-grams. Sequence alignment is a well-
established method in bioinformatics used for identifying
regions of similarity between two sequences that might
be a consequence of functional, structural or evolutionary
relationships. Typically, a ground truth of clean sequence is
used to align various noisy sequences. On the other hand,
skip-grams can be used to model noisy sequences by finding
the pattern of characters (or words) that do not have to be
consecutive. For example, a 1-skip grams algorithm would
be applied the same way as 2-grams, but by skipping a word
in every two grams in the analyzed document. They are
considered a generalization of n-grams model which can be
used to overcome noise in the sequence.

6.3. Other Applications
While the main application we used in Chatter relies on
transforming behavioral profiles into documents and using
them for understanding the behavior of malware utilizing n-
gram techniques, the concept is generic and can be applied
to a wide variety of applications. In the following we
identify several potential applications which can benefit
from Chatter: (1) Process-based DDoS detection: While
our system studies a specific DDoS malware family, our
system can be generalized to understand any process-based
DDoS attack by observing traffic on the wire, generating
sufficient artifacts that can be used to derive features and
footprint such attacks. (2) Advanced persistent threats: Often
such threats (process-based) result in many artifacts that are
generated over a long period of time, rendering research
systems less effective in characterizing them. One potential
area of improvement is to rely on the inter-event patterns they
generate, using Chatter.

One potential application to the technique is what we
term as the “adversary incubation”, in which an attacker is
led into a controlled environment and observed over a long
period of time. The behavior of the adversary can be then
used to characterize him and using his network activities in
particular. We notice that the adversary incubation is one step
for understanding the “advanced persistent threat” (APT), and
is widely used in the industry. The incubation usually result
in network artifacts generated by the adversary and spread
over a long period of time, as a result of low rate activities
that the adversary hope to go unseen by anomaly detection
defenses. Utilizing systems like AMAL for understanding the
adversary might not be as effective, whereas using the inter-
event patterns of actions taken by the adversary may reveal
valuable about the attacker and help attributing attacks to him.

7. Conclusion
Motivated by the need for deriving new and easy-to-obtain
features, we introduced Chatter, a behavior-based malware
classification system. Chatter uses behavioral artifacts
generated by malware samples at runtime to characterize
malware. At its core, Chatter considers the order in which
behavioral events occur. We notice that order-based features

can be captured and analyzed using the n-gram technique
widely used in document classification. With its many
advantages enumerated in Section 4, and using three malware
families, Chatter is shown to be reasonably accurate at
classifying malware samples into their respective families.

We considered order-based behavioral features for classi-
fication of malware samples in its simplest form. Addressing
the limitations outlined in Section 6.2 is the immediate future
work. In particular, we would like to explore partial-order
features for fingerprinting malware samples. Those features
would address noised features (both intentional obfuscation
by malware authors, and unintentional, due to mixed signals
on-the-wire). Realizing the applications listed in Section 6.3
using the Chatter methodology is another future work that we
would like to explore.
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