
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2941193, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 1

Towards Low-Cost Mechanisms to Enable
Restoration of Encrypted Non-Volatile Memories

Mao Ye, Student Member, IEEE, Kazi Abu Zubair, Student Member, IEEE, Aziz Mohaisen, Senior
Member, IEEE, Amro Awad, Member, IEEE

Abstract—Since Non-Volatile Memories (NVMs) started entering the mainstream memory/storage market, we must consider how to
secure NVM-equipped computing systems. Recent Meltdown and Spectre attacks are a strong evidence that security must be intrinsic
to computing systems instead of being added as an afterthought. Processor vendors are taking the first steps and are beginning to
build security primitives into commodity processors. One security primitive that is associated with the use of emerging NVMs is
memory encryption. Memory encryption, while necessary, is very challenging when used with NVMs because it exacerbates the write
endurance problem. Secure architectures use cryptographic metadata that must be persisted and restored to allow secure recovery of
data in the event of power-loss. Specifically, encryption counters must be persistent to enable secure and functional recovery of an
interrupted system. However, the cost of ensuring and maintaining persistence for these counters can be significant. In this paper, we
propose a novel scheme to maintain encryption counters without the need for frequent updates. Our new memory controller design,
Osiris, repurposes memory Error-Correction Codes (ECCs) to enable fast restoration and recovery of encryption counters. Since
different counter-mode encryption schemes are used in industry and research, we provide a versatile Osiris implementation that
improves the performance and write-endurance in different memory encryption schemes. To evaluate our design, we use Gem5 to run
eight memory-intensive workloads selected from SPEC2006 and U.S. Department of Energy (DoE) proxy applications, and three
computation-intensive graph algorithms from CRONO. Compared to a write-through counter-cache scheme, on average, Osiris can
reduce 45.8% of the memory writes (increase lifetime by 1.86x), and reduce the performance overhead from 44.7%(for write-through)
to only 4.49%. Furthermore, without the need for backup battery or extra power-supply hold-up time, Osiris performs better than a
battery-backed write-back (4.4% vs. 5.7% overhead) and has less write-traffic (1.8% vs. 5.4% overhead).

Index Terms—Secure architectures, persistent memory, non-volatile memories, crash consistency, secure recovery.
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1 INTRODUCTION

Emerging Non-Volatile Memories (NVMs) are a promis-
ing advancement in memory and storage systems. For the
first time in the modern computing era, memory and storage
systems have the opportunity to converge into a single
system. With latencies close to those of DRAM and the
ability to retain data in power loss events, NVMs represent
a perfect building block for architectures that allow files to
be stored in media and accessed in a way similar to the way
we access the memory system, i.e., through conventional
load/store operations. Furthermore, given the near-zero idle
power of emerging NVMs, they can bring significant power
savings by eliminating the need for the frequent refresh
operations needed for DRAM. NVMs also promise large
capacities and much better scalability compared to DRAM
[1], [2], giving more options for running workloads with
large memory footprints.

While NVMs are certainly promising, they face chal-
lenges that can limit their wide adoption. One major chal-
lenge is the limited number of writes that NVMs can endure;
most promising technologies, e.g., Phase-Change Memory
(PCM), can only endure tens of millions of writes for each
cell [3], [4]. They also face security challenges; NVMs can
facilitate data remanence attacks [4], [5], [6]. To address such
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vulnerabilities, processor vendors, such as Intel and AMD,
have started supporting memory encryption. Unfortunately,
memory encryption exacerbates the write endurance prob-
lem due to its avalanche effect [4], [6]. Thus, it is very
important to reduce the number of writes in the presence
of encryption. In fact, we observe that significant number of
writes can occur due to persisting encryption metadata. For
security and performance reasons, counter-mode encryp-
tion has been used for state-of-the-art memory encryption
schemes [4], [6], [7], [8], [9]. For counter-mode encryption,
encryption counters/initialization vectors (IVs) are needed
and are typically organized or grouped to fit in cache blocks,
e.g., Split-Counter scheme (64 counters in 64B block) [10]
and SGX (8 counters in 64B block) [7]. One major reason
behind that is, for cache fill and eviction operations, most
DDR memory systems process read/write requests on 64B
block granularity, e.g., DDR4 8n-prefetch mode. Moreover,
packing up multiple counters in a single cache line can
exploit spatial locality to increase counter cache hit rate.

Most prior research work has assumed systems have
a sufficient residual or backup power to flush encryption
metadata, i.e., encryption counters, in the event of power
loss [4], [9]. Although feasible in theory, reasonably long-
lasting Uninterruptible Power-Supplies (UPS) are expen-
sive and occupy large areas in practice. Admittedly, the
Asynchronous DRAM Refresh (ADR) feature has been a
requirement for many NVM form factors, e.g., NVDIMM
[11], but major processor vendors only limit persistent do-
mains in processors to tens of entries in the write pending
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queue (WPQ) in the memory controller [12]. The main reason
behind this is the high cost for guaranteeing a long-lasting
sustainable power supply in case of power loss coupled
with the significant power needed for writing to some
NVM memories. However, since encryption metadata can
be in the order of kilobytes or even megabytes, the system-
level ADR feature would most likely fail to guarantee its
persistence as a whole. In many real-life scenarios, afford-
ing sufficient backup battery or expensive power-supplies
is in-feasible, either due to area, environmental or cost
limitations. Therefore, battery-free solutions are always in
demand.

Persisting encryption counters is not only critical for sys-
tem restoration but is also a security requirement. Reusing
encryption counters, i.e., those that have not been persisted
on memory during crash, can result in meaningless data af-
ter decryption. Even worse, losing the most-recent counters
invites a variety of attacks that exploit reuse of encryption
pads (counter-mode encryption security strictly depends on
the uniqueness of encryption counters used for each encryp-
tion). Recent work [13] has proposed atomic persistence of
encryption counters, in addition to exploiting application-
level persistence requirements to relax atomicity. Unfortu-
nately, exposing application semantics (persistent data) to
hardware requires application modifications. Moreover, if
applications have a large percentage of persistency-required
data, persisting encryption metadata will incur a significant
number of extra writes to NVM. Finally, although the se-
lective counter persistent scheme can be safely integrated
with the monolithic counter scheme, it can cause encryption
pad reuse in non-persistent data memory locations for other
counter schemes. Note that such reuse can happen for
different users or applications.

In this paper, we propose a lightweight solution,
motivated by a discussion of the problem of persisting
NVM encryption counters, and discuss design options for
persisting encryption counters. In contrast with prior work,
our solution does not require any software modifications
and can be orthogonally augmented with prior work [13].
Moreover, our solution chooses to provide consistency
guarantees for all memory blocks rather than limiting these
guarantees to a subset of memory blocks, e.g., persistent
data structures. To this end, our solution, Osiris, repurposes
Error-Correction Code (ECC) bits of the data to provide a
sanity-check for the encryption counter used to perform the
decryption. By doing so, Osiris can reason about the correct
encryption counter even when the most-recent value is lost.
Thus it can relax the strict atomic persistence requirement
while providing secure and fast recovery of lost encryption
counters. We discuss our solution and evaluate its impact
on write-endurance and performance. To evaluate our
design, we use Gem5 to run a selection of eight memory-
intensive workloads from SPEC2006 and U.S. Department
of Energy (DoE) proxy applications, as well as three
computation-intensive graph algorithms from CRONO.
Compared to the write-through counter-cache scheme, on
average, Osiris can reduce 45.8% of the memory writes
(increase lifetime by 1.86x), and reduce the performance
overhead from 44.7% (for write-through) to only 4.49%.
Furthermore, without the need for backup battery or extra
power-supply hold-up time, Osiris performs better than a

battery-backed Write-Back (4.4% vs. 5.7% overhead) and
has less write-traffic (1.7% vs. 5.4% overhead). In summary,
the major contributions of our paper are the following:

• We propose Osiris, a novel scheme that provides
crash consistency for encryption counters similar to
strict counter persistence schemes but with a signif-
icant reduction in performance overhead and num-
ber of NVM writes, without the need for an exter-
nal/internal backup battery. Its optimized version,
Osiris-Plus, further reduces the number of writes
by eliminating premature counter evictions from the
counter cache. Both schemes are for split counter and
local counter mode encryption.

• We propose Osiris-global, a counter persistence
scheme that guarantee crash consistency for global
counter mode encryption mode at a cost of a small
overhead and number of NVM writes compared to
write-through scheme, without the need for battery
backup.

• We discuss several design options for Osiris and
Osiris-global and provide trade-offs between hard-
ware complexity and performance.

• We discuss the recovery advantages of our schemes,
and how our scheme can work with and be in-
tegrated with state-of-the-art data and counter in-
tegrity verification schemes.

The rest of the paper is organized as follows. In Section 2, we
briefly discuss the main concepts and background relevant
to our paper. In Section 3, we discuss our own solution,
its design options, trade-offs and security impact. Section 5
covers our evaluation methods and analysis for Osiris. Later,
in Section 6, we discuss prior and related work. Finally, we
conclude our work in Section 7

2 BACKGROUND AND MOTIVATION

2.1 Background
In this part of the paper, we will discuss emerging NVMs
and state-of-the-art memory encryption implementations.

2.1.1 Emerging NVMs
Emerging NVM technologies, such as Phase-Change Mem-
ory (PCM) and Memristor, are promising candidates as the
main building blocks of future memory systems. Vendors
are already commercializing these technologies due to their
many benefits. NVMs’ read latencies are comparable to
DRAM while promising high densities and potential for
scaling better than DRAM, while enabling persistent appli-
cations. On the other hand, emerging NVMs have limited,
slow and power-consuming writes. NVMs also have limited
write endurance. For example, PCM’s write endurance is be-
tween 10-100 million writes [3]. Moreover, emerging NVMs
suffer from a serious security vulnerability: they keep their
content even when the system is powered off. Accordingly,
NVM devices are often paired with memory encryption.

2.1.2 Memory Encryption and Data Integrity Verification
There are several encryption modes that can be used to
encrypt the main memory. The first one is the direct en-
cryption (a.k.a ECB mode), where an encryption algorithm,
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such as AES or DES, is used to encrypt each cache block
when it is written back to memory and decrypt it when
it enters the processor chip again. The main drawback of
the direct encryption is system performance degradation
due to adding the encryption latency to the memory access
latency (the encryption algorithm takes the memory data
as its input). The second mode, which is commonly used
in secure processors, is the counter mode encryption. In the
counter mode, the encryption algorithm (AES or DES) uses
an initialization vector (IV) as its input to generate a one-time
pad (OTP) as depicted in Figure 1. Once the data arrives, a
simple bitwise XOR with the pad is needed to complete the
decryption. Thus, the decryption latency is overlapped with
the memory access latency. In counter-mode encryption,
various counter organizations are used and have distin-
guished structures, as described in Table 2.1.2. In state-of-
the-art designs [10], each IV consists of a unique ID of a
page (to distinguish between swap space and main memory
space), page offset (to guarantee different blocks in a page
will get different IVs), a per-block minor counter (to make
the same value encrypted differently when written again
to the same address), and a per-page major counter (to
guarantee uniqueness of IV when minor counters overflow).

In contrast, recent work leverage local counter and
global (monolithic) counter [8], [13], [14]. In such schemes,
a global(monolithic) counter can be thought of as a timer,
incremented on each memory write, and due to its mono-
increasing property can be used to generate the OTP of each
block to be written to memory. The counter value will be
saved in memory along with the written block and used
later for decryption. Whereas a local counter is incremented
only when its associated block is written-back. During
encryption and decryption, the local counter value is ap-
pended to local data address to make the IV unique. Clearly,
such implementations are simple to implement, however,
require high storage overhead; 64-bit counter value for each
data block.

TABLE 1
Counter Types Used in Encryption Mode

Type Structure Incremental Policy Overflow
Global
(Mono-
lithic)

Only one global
counter

For every write-back
to a data block, the
global counter adds
one

Frequent

Local Each data block
has one local
counter

For every write-back
to a data block, this
block’s local counter
adds one.

Not
frequent

Split Each data block
has a local major
counter(per page)
and a local minor
counter(per
block)

For every write-back
to a block, its minor
counter adds one.
Every minor counter
overflows, major
counter adds one and
all the data blocks
in that page have
to re-encrypt using
new major and minor
counter combination.

Not
frequent

Similar to prior work [4], [6], [10], [13], [15], we as-
sume counter mode processor-side encryption. In addition
to hiding the encryption latency when used for memory
encryption, it also provides strong security defenses against
a wide range of attacks. Specifically, counter-mode encryp-
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Fig. 1. State-of-the-art counter mode encryption. AES is shown but other
cryptographic algorithms are possible [4].

tion prevents bus snooping attack, dictionary-based attacks,
known-plaintext attacks and replay attacks. In state-of-the-
art work [10], the encryption counters are organized as
major counters (shared between cache blocks of the same
page) and minor counters that are specific for each cache
block [10]. This organization of counters can fit 64 data
blocks’ counters in a 64B block; 64 7-bit minor counters and
a 64-bit major counter. When the major counter of a page
overflows (64-bit counter), the key must be changed and
the whole memory will be re-encrypted with the new key.
This scheme provides a significant reduction of memory re-
encryption rate and minimizes the storage overhead of en-
cryption counters when compared to other schemes such as
global counter scheme or local counter for each cache block
[13], [14]. Additionally, a split-counter scheme allows for
better exploitation of spatial locality of encryption counters,
achieving a higher counter cache hit rate. Although other
type of counters have large storage overhead, 64-bit for each
64-byte block, easy to overflow and show high miss rate,
they are still used for their unified and simple nature to
implement [13], [14]. Therefore, in our work, all the counter
types are discussed.

C0 C1

S1= Hash(C0,C1)

C2 C3 C4 C5 C6 C7

D2= Hash(S3,S4)

Root= Hash(D1,D2)Merkle Tree Root

S2= Hash(C2,C3) S3= Hash(C4,C5) S4= Hash(C6,C7)

D1= Hash(S1,S2)

Leaves (counters)

Intermediate Nodes

Secure Processor Boundary

Merkle Tree

Fig. 2. An example Merkle Tree for integrity verification.

Data integrity is typically verified through a Merkle Tree
— a tree of hash values with the root maintained in a secure
region. In addition to the data, integrity for the encryption
counters is also an essential part of the overall integrity
of the system. In order to provide sufficient protection to
the entire memory using a tree of reasonable size, state-
of-the-art designs combine both data integrity and encryp-
tion counter integrity through a single Merkle Tree (Bonsai
Merkle Tree [15]). As shown in Figure 2, Bonsai Merkle
tree is built around the encryption counters. Data blocks
are protected by a MAC value that is calculated over the
counter and the data itself. Note that only the root of the
tree needs to be kept in the secure region, other parts of the
Merkle Tree are cached on-chip to improve performance. For
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the rest of the paper, we assume a Bonsai Merkle Tree.

2.2 Encryption Metadata Crash Consistency
While crash consistency of encryption metadata has been
overlooked in most memory encryption work, it becomes
essential in persistent memory systems. If a crash happens,
the system is expected to recover and restore its encrypted
memory data. Figure 3 depicts the steps needed to ensure
crash consistency.

Merkle Tree

Counters

Data

NVM Memory

Secure Processor

LLC...

MT 
Cache

Counter 
Cache

MT Root

Memory 
Controller 

+
Encryption

Engine

1

2

3

Fig. 3. Steps for write operations to ensure crash consistency.

As shown in the Figure 3, when there is a write operation
to NVM, first we need to update the root of the Merkle
tree (as shown in step 1 ) and any cached intermediate
nodes inside the processor. Note that only the root of the
Merkle Tree needs to be kept in the secure region. In fact,
maintaining intermediate nodes of the Merkle Tree in cache
can speed up the integrity verification. Persisting updates of
intermediate nodes into memory is optional as it is feasible
to reconstruct them from leaf nodes (counters) and then
generate the root and verify it through comparison with
that kept inside the processor. We stress that the root of
the Merkle Tree must persist safely across system failures,
e.g., through internal processor NVM registers. Persisting
updates to intermediate nodes of the Merkle Tree after each
access might speed up recovery time by reducing the time of
rebuilding the whole Merkle Tree after crash. However, the
overheads of such a scheme and the infrequency of crashes
make rebuilding the tree a more reasonable option.

In step 2 (Figure 3), the updated counter block will be
written back to memory as it gets updated in the counter
cache. Unlike Merkle Tree intermediate nodes, counters are
critical to keep and persist, otherwise the security of the
counter-mode encryption is compromised. Moreover, losing
the counter values can result in the inability to restore
encrypted memory data. As noted by Liu et al. [13], it is
possible to just persist counters of persistent data structures
(or a subset of them) to enable consistent recovery. However,
this is not sufficient from a security point of view; losing
counters’ values, even for non-persistent memory locations,
can cause reuse of an encryption counter with the same key,
which can compromise the security of the counter-mode
encryption. Furthermore, legacy applications may rely on

OS-level or periodic application-oblivious checkpointing,
making it challenging to expose their persistent ranges to
the memory controller. Accordingly, a secure scheme that
persists counter updates and does not require software
alteration is needed. Note that even for non-persistent ap-
plications, counters must be persisted on each update or
the encryption key must be changed and all of the memory
must be re-encrypted with a new key. Moreover, if the per-
sistent region in memory is large, which is likely in future
NVM-based systems, most memory writes will naturally be
accompanied by an operation to persist the corresponding
encryption counters, making step 2 a common event.

Finally, the written block will be sent to the NVM as
shown in step 3 . Some portions of step 1 and step 2 are
crucial for correct and secure restoration of secure NVMs.
Also note that when updating the root of the Merkle Tree
on the chip, updating the counter and writing the data are
assumed to happen atomically, either using three internal
NVM registers to save them before trying to update them
persistently or using hold-up power that is sufficient to
complete three writes. To avoid incurring high latency to
update NVM registers for each memory write, a hybrid
approach can be used where three volatile registers can be
backed with hold-up power enough to write them to the
slower NVM registers inside processor. Ensuring such write
atomicity is beyond the scope of this paper; our focus is
to avoid frequent persistence of updates to counter values
in memory and using the fast volatile counter cache while
ensuring safe and secure recoverability.

2.3 Motivation

As mentioned earlier, counter blocks must be persisted to
allow safe and secure recovery of the encrypted memory.
Also, the Merkle Tree root cannot be written to NVM and
must be saved in the secure processor. The intermediate
nodes of the tree can be reconstructed after recovery from
a crash, hence there is no need to persist updates to the
affected nodes after each write operation. In other words,
no extra work should be done to the tree beyond what
occurs in conventional secure processors without persistent
memory. As the performance overhead of Bonsai Merkle
Tree integrity verification is negligible (less than 2% [15]),
our focus in this paper is to reduce the overhead of persist-
ing encryption counters. To persist the encryption counters,
we employ two methods as our baselines: Write-Through
Counter Cache (WT) and Battery-Backed Write-Back Counter
Cache (WB). In the WT approach, whenever there is a write
operation issued to NVM, the corresponding counter block
is updated in the counter cache and persisted in NVM
before the data blocks are encrypted and updated in NVM
to complete the write operation [16]. However, the WT
approach causes significant write-traffic and will severely
degrade performance. In the WB approach, the updated
counter block is marked as dirty in the counter cache and
is only written back to NVM when it is evicted [13]. The
main issue with the WB counter-cache is that it requires
a sufficient and reliable power source after a crash to en-
able flushing the counter-cache contents to NVM, which
increases the system cost and typically requires a large area.
Most processor vendors, e.g., Intel, define the in-processor
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persistent domain to only include the write-pending queue
(WPQ) in the memory controller. Note that using UPS to
hold-up the system until backing up important data is a
common practice in critical systems. However, we do not
expect commodity or low-power processors to shoulder the
costs and area requirements of UPS systems.
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Fig. 4. Impact of counter-cache persistence on performance.

Shown in Figure 4, WT counter-cache entails a signifi-
cant performance degradation for most of the benchmarks
compared to no-encryption and WB counter-cache schemes.
On average, WT scheme degrades the performance by
44.7% whereas WB scheme only degrades performance by
4.5% compared to a no-encryption (unprotected) scheme.
In applications that are write-intensive, e.g., libquantum
benchmark, the performance overhead of WT can reach
198% normalized to that of the no-encryption scheme.
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Another key metric relevant to NVM is the write traf-
fic. NVMs have a limited write bandwidth due to the
limited write-drivers and the large power-consumption for
each write operation. More critically, NVMs have a limited
endurance for writes. In WT scheme, and besides data
block write, each write operation requires an additional in-
memory persistence of the counter value, thus incurs twice
the write traffic of the no-encryption scheme. In contrast,
the WB scheme only writes the updated counter blocks to
the NVM when blocks are evicted from the counter cache.
As shown in Figure 5, WB incurs an extra 5.4% writes
on average when compared to the no-encryption scheme,
whereas WT, as expected, incurs twice the write traffic.

Note that atomicity of the WT scheme includes both data
write and counter write. Crashes (or power loss) can happen
between transactions or in the middle of a transaction. There
are several simple ways to guarantee atomicity. 1 Placing
a small NVM storage (e.g., 128B) inside the processor chip
to log both the to-be-written data block and counter block
before trying to commit them to memory. If a failure occurs,
once the system restores, it begins with redoing the stored
transactions. 2 Guaranteeing enough power hold-up time
(through reasonable small capacitors) to complete at least
2 write operations (data and counter). However, solutions
that aim to guarantee memory transaction-level atomicity
are beyond the scope of this paper.

In this paper, we propose a new scheme that has the
advantages of the WT scheme—no need for a battery or
long power hold-up time. It also has as small performance
and write traffic overheads such as those of the WB scheme.

3 OSIRIS
We first discuss our threat model, followed by the design of
Osiris and the possible design options and trade-offs.

3.1 Threat Model
Our assumed threat model is similar to the state-of-the-
art work on secure processors [4], [6], [8], [13]. The trust
base includes the processor and all its internal structures.
Our threat model assumes that an attacker can snoop the
memory bus, scan the memory content, try to tamper with
the memory content (including rowhammer) and replay old
packets. Differential power and electromagnetic inference
attacks, as well as attacks that try to exploit processor bugs
in speculative execution, such as Meltdown and Spectre,
are beyond the scope of this paper. Such attacks can be
mitigated through more aggressive memory fencing around
critical code to prevent speculative execution. Finally, our
proposed solution does not preclude secure enclaves and
hence can operate in untrusted Operating System (OS)
environments.
Attack on Reusing Counter Values for Non-Persistent
Data: While state-of-the-art [13] work relaxes persisting
counters for non-persistent data, it introduces serious secu-
rity vulnerabilities. Specifically, assume an attacker applica-
tion uses known-plaintext and write it to memory, however,
if the memory location is non-persistent the encrypted data
will be written to memory but probably not the counter.
Thus, by observing the memory bus, the attacker can find
out the encryption pad by XORing the observed ciphertext,
(Ekey(IVnew)⊕Plaintext), with the Plaintext. Note that it
is also easy to predict the plaintext for some accesses, for in-
stance, zeroing at first access. By now, the attacker knows the
value of Ekey(IVnew). After a crash, however, the memory
controller will read IVold and increment it, which generates
IVnew and then encrypt the new application data written to
that location to become Ekey(IVnew)⊕Plaintext2. Knowing
Plaintext2 only needs XORing the ciphertext with the pre-
viously observed Ekey(IVnew). Note that the stale counter
could have been already incremented multiple times before
the crash, hence multiple writes of the new application can
reuse counters with known encryption pads. Note that such
an attack only needs a malicious application to run (or just
predictable initial plaintext of an application) and having a
physical attacker or bus snooper.
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3.2 Design Options
Before delving deep into the details of Osiris, let’s first
discuss the challenges of securely recovering the encryption
counters after a crash happens. Without a mechanism to
persist encryption counters, once a crash occurs, we are only
guaranteed that the root (kept in processor) of the Merkle
Tree is updated and reflects the most recent counter values
written to memory: any write operation before being sent to
NVM will update the affected parts/branches of the Merkle
Tree up to the root. Note that, most likely, the affected
branches of the Merkle Tree will be cached on the processor
and there is no need to persist them as long as the processor
can maintain the value of the root after crash. Later, and
once the power is back and we want to restore the system,
we may have stale counter values in the NVM and stale
intermediate values of the Merkle Tree.

Once the system is powered back, any access to a mem-
ory location needs two main steps: 1 Obtaining the cor-
responding most-recent encryption counter from memory.
2 Verifying the integrity of data through MAC and the

integrity of the used counter value through Merkle Tree. As
it is possible that Step 1 results in a stale counter, Step
2 will fail due to Merkle Tree mismatch. Remember that

the root of the Merkle Tree has been updated before crash,
thus using any stale counter will be detected. As soon as
the error is detected, the recovery process stops. One naı̈ve
approach would be to try all possible counter values and
use the Merkle Tree to verify each value. Unfortunately,
such a brute-force approach is impractical due to several
reasons. First, finding out the actual value requires trying
all possible values for a counter paired with calculating
the corresponding hash values to verify integrity, which is
impractical for typical encryption counter schemes where
there could be 264 possible values for each counter. Second,
it is very unlikely that only one counter value is stale: many
updated counters in the counter cache will be lost. Thus,
reconstructing the Merkle Tree will be almost impractical
if there are multiple stale counters. Let’s say counters of
blocks X and Y are lost, then we need to reconstruct Merkle
Tree with all possible combinations/values of X and Y , and
then compare the resulting root with the one safely stored in
processor. While for simplicity we only mention losing two
counters, in actual crash where a counter cache is hundreds
of kilobytes, we will likely have thousands of stale blocks.

Observation 1. Losing encryption counter values renders re-
constructing Merkle Tree nearly impossible. Approaches
such as brute-force trial of possibly lost counter values
to reconstruct Merkle Tree will likely take prohibitive
time especially when multiple counter values have been
lost. Hence, verifying the integrity/correctness of the
counters stored in NVM is challenging.

One possible way to reduce reconstruction time is by
employing stop-loss mechanisms to limit the number of
possible counter values to verify for each counter after
recovery. Unfortunately, since there is no way to pinpoint
exactly which counters have lost their values, an aggressive
searching mechanism is still needed. If we limit the number
of writes to each counter block before persisting it to only N ,
then we need to try up to NS combinations for reconstruc-
tion, where S is the number of data blocks. For instance,

let’s assume we have a 128GB NVM memory and 64B cache
blocks, then we have 2G blocks. If we only set N to 2, then
we need up to 22

31

= 22147483648 trials. Accordingly, stop-
loss mechanism could reduce the time to reconstruct the
Merkle Tree, however, still is impractical.

Obviously, a more explicit confirmation is needed before
proceeding with an arbitrary counter value to reconstruct
the Merkle Tree. In other words, we need a hint on what was
the most recent counter value for each counter block. For
instance, if the previously discussed stop-loss mechanism is
used along with an approach to bookkeep the phase within
the N trials before writing the whole counter block, then we
can start with a more educated guess. Specifically, each time
we update a counter block N times in the counter-cache, we
need to persist its N th update in the memory, which means
that we need log2N bits (i.e., phase) for each counter block
be written atomically with the data block. Later, when the
system starts recovery, it knows the exact difference between
the most recent counter value and the one used to encrypt
the data through the phase value.

Observation 2. Co-locating the data blocks with a few
bits that reflect the most-recent counter value used for
encryption can enable fast-recovery of the counter-value
used for encryption. Note that if an attacker tries to
replay old data along with their phase bits, then the
Merkle Tree verification will detect the tampering due
to mismatch in the resulting root of the Merkle Tree.

Although stop-loss along with phase storage can make
the recovery time practical, adding more bits in memory
for each cache line is tricky for several reasons. First, as
discussed in [13], increasing the bus-width requires adding
more pins to the processor. Even avoiding extra pins by
adding extra burst in addition to the 8 bursts of 64-bit
bus width for each 64B block is expensive and requires
support from DIMMs in addition to under utilization of data
bus (only few bits are written in the 64-bit wide memory
bus in the last burst). Second, major memory organization
changes are needed, e.g., row-buffer size, memory controller
timing and DIMM support. Additionally, cache blocks are
no longer 64B aligned, which can cause complexity in
addressing. Finally, extra bit writes are needed for each
cache line to reflect the counter phase, which can map to
a different memory bank, hence additional occupation of
bank for write latency.

To retain the advantages of the stop-loss paired with
phase bookkeeping but without extra bits, Osiris repurposes
already existing ECC bits as a fast counter recovery mecha-
nism. The following subsection will discuss in details how
Osiris can elegantly employ ECC bits of data to find out the
counter used for encryption.

3.3 Design
Osiris mainly relies on inferring the correctness of an en-
cryption counter from calculating the ECC associated with
the decrypted text and compares it with that encrypted and
stored along with the encrypted cache line. In conventional
(not encrypted) systems, when the memory controller writes
a cache block to the memory, it also calculates its ECC, e.g.,
hamming code, and stores it along with the cache line. In
other words, the tuple will be written to the memory when
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writing cache block X to memory is {X, ECC(X)}. In contrast,
in encrypted memory systems, there are two options to
calculate ECC: 1 Using the plaintext, then encrypt it with
the cache line before writing both to memory. 2 The second
option is to encrypt the plaintext, then calculate the ECC
over the encrypted block before both are written to the
memory. Although approach 2 allows overlapping de-
cryption and ECC verification, most ECC implementations
used in memory controllers, e.g., SEC-DED Hsiao Code [17],
take less than a nanosecond to complete [18], [19], [20],
which is negligible compared to cache or memory access
latencies [21]. Additionally, pipelining the arrival of bursts
with decryption and ECC bits decoding will completely
hide the latency. However, we observe that calculating ECC
bits over the plaintext and encrypting it along with the
cacheline can provide low-cost and fast way of verifying the
correctness of the encryption/decryption operation. Specifi-
cally, in the counter-mode encryption, the data is decrypted
using the following: {X,Z} = Ekey(IVX) ⊕ Y , where Y is
potentially the encryption of X along with its ECC and Z
is potentially equal to ECC(X). In conventional systems,
if ECC(X) 6= Z , then the reason is definitely an error
(or tampering) occurred on X or Z. However, when the
counter-mode encryption is used, the reason could be an
error (or tampering) occurred on X or Z, or wrong IV is used
to do the encryption, i.e., decryption is not successful.

Observation 3. When the ECC function is applied over the
plaintext and the resulting ECC bits are encrypted along
with the data, ECC bits can provide a sanity-check for
the used encryption counter. Any tampering with the
counter value will be detected by a clear mismatch of the
ECC bits result from that invalid (wrong/stale counter)
decryption; results of Ekey(IVold) and Ekey(IVnew) are
very different and independent. Note that in Bonsai
Merkle Tree, data-integrity is protected through MAC
values that are calculated over each data and its cor-
responding counter. While relying on ECC for sanity-
checking the used counter can be used, the ECC bits
can fail to provide guarantees as strong as cryptographic
MAC values. Accordingly, we adopt Bonsai Merkle to
additionally protect data integrity. However, ECC bits
when combined with counter-verification mechanisms,
can provide tamper-resistance as strong as the error
detection of the used ECC algorithm.

Important Note: Stream ciphers, e.g., CTR and OFP modes,
do not propagate errors, i.e., an error in the ith encrypted
data bit will result in an error in ith bit of decrypted data,
hence the reliability is not affected. In encryption modes
where an error in encrypted data results in completely
unrelated decrypted text, e.g., block cipher modes, careful
consideration is required as encrypting ECC bits can render
them useless when there is an error. For our scheme, we
focus on state-of-the-art memory encryption, which uses
CTR-mode for security and performance reasons.

The question is how to proceed when there is an error
detected due to a mismatch between the expected and
stored ECC. As the reader would expect, the first step is
to find if the error is correctable using the ECC code. If the
error is uncorrectable, before giving up, we take the odds
that the IV used is incorrect, i.e., the decryption was not

successful. Our goal is to find out if the error is due to using
a wrong IV. Below is a summary of the common reasons for
such a mismatch between the expected ECC and the stored
ECC after decryption:

TABLE 2
Common Sources of ECC Mismatch.

Error Type Typical Fix
Error on stored
data

can be fixed if the error is correctable, e.g.,
single bit failure

Error on ECC typically unrecoverable
Stale/Wrong IV Speculate the correct IV and verify it

As shown in Table 2, one reason for such a mismatch
is using an old IV value. To better understand how this
can happen, we recall the counter cache persistence issue.
If a cache block is updated in memory, it is necessary to
also update and persist its encryption counter, for both
security and correctness reasons. Given the ability to detect
the use of stale counter/IV, we can implicitly reason about
the likelihood of losing the most-recent counter value due
to a sudden power loss. To that extent, in theory, we can
try to decrypt the data with all possible IVs and stop when
an IV successfully decrypts the block, i.e., the resulting ECC
matches the expected one (ECC(X) = Z). At that point,
there is a high chance that such an IV was actually the
one used to encrypt the block, but was either lost due to
inability to persist the new counter value after persisting
the data, or due to a relaxed scheme. Osiris builds upon the
later possibility using a relaxed counter persistence scheme
employing ECC bits to verify the correctness of the counter
used for encryption. As discussed earlier, it is impractical
to try all the possible IVs to infer the one used to encrypt
the block. Thus, Osiris deploys the stop-loss mechanism to
limit such possibility to only N counter updates; i.e., the
correct IV should be within [IV + 1, IV + N ], where IV
is the most recent IV that was stored/persisted in memory.
Note that once the speculated/chosen IV passes the first
check through ECC sanity-check it also needs to be verified
through Merkle Tree.

We propose two flavors for Osiris, baseline Osiris and
Osiris-Plus. In the baseline, all counters being read from
memory reflect their most-recent values during normal
operation, and the most-recent value is either updated in
cache or evicted/written-back to memory. Thus, inconsis-
tency between counters in memory and counters in cache
can happen due to crash or tampering with counters in
memory. In contrast, Osiris-Plus strives to even outperform
Battery-Backed Write-Back counter-cache scheme through
purposely skipping counter updates and recovering their
most-recent values when reading them back, hence incon-
sistency can happen during normal operation. Below is a
further discussion on both baseline Osiris and Osiris-Plus.
Normal Operation Stage: During normal operation, Osiris
adopts write-back mechanism by updating memory coun-
ters when evicted from the counter cache. Thus, Osiris can
always find the most-recent counter value either in cache
or by fetching it from memory in case of miss. Accord-
ingly, Osiris operation in normal operation is similar to
conventional memory encryption except that a counter is
additionally persisted once each N th update, hence acting
like a write-through for the N th update of each counter.
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In contrast, Osiris-Plus allows occasional dropping of most-
recent values of encryption counters through relying on run-
time recovery mechanism of the most-recent values of coun-
ters. In simple words, Osiris-Plus relies on trying multiple
possible values on each counter miss to recover the most-
recent one before verifying it through Merkle Tree, whereas
baseline Osiris would do that only at system recovery time.
System Recovery Stage: During system recovery time, both
Osiris and Osiris-Plus need to reconstruct Merkle Tree at
the time of restoration. Furthermore, both need to use most-
recent values of counters to reconstruct a Merkle Tree that
eventually has a root that matches the root stored in the
secure processor. In both Osiris and Osiris-Plus, the system
recovery will start with traversing all memory locations
(cache lines) in integrity verified region (all memory in
secure NVM). For each cache line location, i.e., 64B address,
the memory controller uses ECC value after decryption
as a sanity check of the counter retrieved from memory,
however, if the counter value fails the check, all possible
N values will be checked to find the most-recently used
counter value. Later, the correct value will overwrite the
current (stale value) counter in memory. After all memory
locations are vetted, Merkle Tree will be reconstructed with
the recovered counter values and eventually build up all
intermediate nodes and the root. In the final step, the
resulting root will be compared with that saved and kept
in the processor. If a mismatch occurs, the data integrity
of the memory cannot be verified and it is very likely that
an attacker has replayed both counter and corresponding
encrypted data+ECC blocks.

In the next parts, we will discuss the design of Osiris
and Osiris+Plus by guiding the reader through the steps of
read/write operations in both schemes.

3.3.1 Osiris Read and Write Operations

Counter 
Cache

NVM Memory

AES Engine IV (from counter)

Processor KeyECC Encoding

{Data, ECC(Data)}

XOR Encryption 
Pad

Data + ECC

Evicted Cache Block
Merkle Tree

Cache
Merkle Tree

RootMC 
Controller

(if counter%N ==0)

1

3

5

4

2

Fig. 6. Osiris write operation

As shown in Figure 6, during a write operation, once
there is a cache block evicted from LLC, the memory con-
troller will calculate the ECC of the data in the block, as
shown in Step 1 . Note that write operations happen in
the background and typically are buffered for a while in
the write-pending queue. Later, in Step 2 , the memory
controller obtains the corresponding counter in case of miss
and evict/write-back the evicted counter block, if dirty.

The counter value obtained from Step 2 will be used to
proactively generate the encryption pad, as shown in Step
3 . Later, in Step 4 , the obtained counter value will be

verified (in case of miss) and then the counter and affected
Merkle Tree (including root) are updated in Merkle Tree
cache. Additionally, unlike typical write-back counter-cache,
if the new counter value is a multiple of N or 0, then the new
counter value is also persisted before proceeding. Finally, in
Step 5 , the data+ECC is encrypted using the encryption
pad and written to memory.
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Fig. 7. Osiris read operation

During read operation, as in Figure 7, the memory
controller will obtain the corresponding counter value from
counter cache (with hit) or memory (with miss) and evict the
victim block, if dirty, as shown in Steps 1 and 2 . Later,
the obtained counter value will be used to generate the
encryption pad as shown in Step 3 . In Step 4 , the actual
data block is read from memory and decrypted using the
pad generated in Step 3 . Later, in Step 5 , traditional ECC
checking occurs to the decrypted data. Finally, before pro-
ceeding, if the counter block is fetched from memory (miss),
the integrity of the counter value is verified, as shown in
Step 6 . Finally, as shown in Step 7 , the memory controller
receives the decrypted data which is then forwarded to
the cache hierarchy by the memory controller. Note that
many of the steps can be overlapped with any conflicts, for
instance, Step 6 and steps 4 and 5 .

3.3.2 Osiris-Plus Read and Write Operations
The write operation in Osiris-Plus is very similar to the
write-operation in baseline Osiris except that it does not
write back evicted dirty blocks from counter cache (as
could happen in Step 2 of Figure 6); Osiris-Plus recovers
the most-recent value of counter each-time it is read from
memory and only updates it in memory each N th update.
Figure 8 depicts the read operation of Osiris-Plus.

The main difference between Osiris and Osiris-Plus are
Steps 5 and 6 in Figure 8. Osiris-Plus utilizes additional
encryption engines and ECC units to allow fast recovery
of the most-recent counter value. Note that given the fact
that most AES encryption engines are pipelined and the
candidate counter values are sequential, using a single
encryption engine instead of N engines can only add N
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Fig. 8. Osiris-Plus read operation

extra cycles. Later, once a counter value is detected, through
post-decryption ECC verification, to be the most-recent one,
it will be verified through Merkle Tree similar to baseline
Osiris. Later, once counter is verified, the data resulting
from decrypting the ciphertext with the most-recent counter
value will be returned to the memory controller. Note that
the recovered counter value is updated in the counter-cache
with the recovered value, as shown in Step 7 .

3.4 Hardware Overhead
The major hardware components added for our design are
the parallel AES engines. Since the commercial chips with
AES engines, i.e chips made for Apple iOS, NXP R© C29X,
MAX36025, do not reveal the statistics about the area and
power consumption of their implemented AES engines [22],
[23], [24],we estimate the power consumption and area cost
based on the statistics from [9]. For each 128-bit AES engine,
the power cost is 15.1mW and the area cost is 0.204mm2. So
for 4 parallel AES engines, it incurs about 60.4mW energy
overhead and requires 0.816mm2. Compared to the total
power usage 70W [25](ranging from 40W to 85W ) and
multiprocessor area size 246mm2 [26] (102mm2 to 768mm2

since 2012) of a chip, our implementation will introduce
the overhead of less than 0.1% of power usage and around
0.33% of area on die.

3.5 Reliability and Recovery from Crash
As mentioned earlier, to recover from crash, Osiris and
Osiris-Plus need to first recover the most-recent counter val-
ues through utilizing post-decryption ECC bits to find the
correct counters. Later, the Merkle Tree will be constructed
and the root will be verified and compared with that kept
in the root. While the process seems reasonably simple
without errors, the recovery process can get complicated
in the presence of errors. Specifically, uncorrectable errors
in the data or encryption counters render generating a
matching Merkle Tree root nearly impossible, and hence the
inability to verify the integrity of memory. Note that such
uncorrectable errors will have the same effect on integrity-
verified memories even without deploying Osiris.

Uncorrectable errors in encryption counters protected by
Merkle Tree can potentially fail the whole recovery process.

Specifically, when the system attempts to reconstruct
the Merkle Tree, it will fail to generate a matching root.
Furthermore, it is also infeasible to know which part of the
Merkle Tree causes the problem; only the root is maintained
and all other parts of Merkle Tree should work perfectly
and generate the same root or none is trusted. One way
to mitigate such single-point of failure is to keep other
parts of the Merkle Tree in the processor and guarantee
they are never lost from the secure processor chip. For
instance, for an 8-ary Merkle Tree, the immediate 8 children
of the root are also saved all the time in the processor. In
a more capable system, the root, its immediate 8 children
and their immediate children are kept, which is a total
of 73 MAC values. In case recovery fails to produce the
root of the Merkle Tree, we can look at which children
are mismatching, and then declare that part of the tree as
un-verifiable and probably warn the user/OS. While we
provide such insights to solve this problem, we assume the
system architects choose to only save the root, however,
having more NVM registers inside the processors to save
more levels of Merkle Tree can be implemented in case of
high error systems. We leave reconstructing Merkle Tree in
presence of uncorrectable errors as future work.

To formally describe our recovery process success rate,
we can look at two cases. In the first case, when no errors
occur in the data, since each 64B memory block has 8B ECC
bits, the probability that a wrong counter results in correct
(indicate no errors) ECC bits for the whole block is only 1

264 ,
i.e., similar probability to guessing a 64-bit key correctly,
which is next to impossible. Note that each 64B block is
practically divided into 8 64-bit words [27], each has its own
8-bit ECC, i.e., each bus burst will have 64-bit data and 8-
bit ECC (total of 72 bits). This is why most ECC-enabled
memory systems will have 9 chips per rank instead of 8,
where each chip provides 8 bits. The 9th chip provides the
ECC 8-bits for the burst/word. Also note that the 64B block
will be read/written as 8 bursts on a 72-bit memory bus.

Bearing in mind the organization of ECC codewords for
each 64B memory block, let’s now discuss the case where
there is actually an error in data.

For an incorrect counter, the probability that an 8-bit ECC
codeword indicates that there is no error is Pno−error = 1

28

and the probability of not indicating that there is no-
error, i.e., that there is an error, is Perror = 1 − 1

28 . The
probability that k codewords of the 8 ECC codewords
indicate an error can be represented by a Bernoulli Trial
as Pk =

(
8
k

)
× (1− 1

28 )
K × ( 1

28 )
8−K . For example, P2

represents the probability of having 2 of the 8 ECC code-
words flagging an error for a wrongly decrypted data and
ECC (semi-randomly generated). Accordingly, if we use our
metric to filter out encryption counters that have 4 or more
ECC codewords indicating an error, then the probability of
our success in detecting wrong counters can be given by
Pk≥4 = 1− (P0+P1+P2+P3). We find that Pk≥4 is nearly
100%. Even Pk≥7 is 99.95%. Note that the probability all 8
codewords indicate an error is 96.91%, which is still very
high. In other words, Osiris can successfully identify wrong
counters with a success rate of almost 100% by filtering out
any counter has 7 or more ECC codewords indicating errors.
Thus, except for the pathological case where a cache block
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has actual errors on each of its words, Osiris can reliably
distinguish wrong counters with a success rate of almost
100%. In that extremely pathological case, where each word
of the memory block has at least one error, all counter
values will be filtered out, and then Osiris can verify all
the counters values (e.g., 8 values) through Merkle Tree to
recover the correct one. Note that the probability a bit error
occurs is very small, however, the described pathological
case occurrence requires at least an error to occur on each
of the 8 memory words in the block at the same time,
which is extremely rare. Note that the words and ECC are
typically interleaved and spread in the row and thus nearly
independent [27]. It is also important to note that all of our
discussion here about detecting a wrong encryption counter
in the presence of errors is relevant to the case of having an
error.

In summary, Osiris can detect wrong counter reliably
in all cases except the pathological case where there is at
least an error on each word of the block corresponds to the
counter being recovered, which will require an additional
step of verification through Merkle Tree. Thus, Osiris does
not affect how many errors an ECC can detect/correct per
word but limits the number of faulty words within a 64B to
not exceed 7 words to avoid additional step (Merkle Tree)
before detection/correction. We believe that having errors
on each word of a block is an extreme case and will not affect
the adoption of Osiris. Note that some PCM prototypes use
similar ECC organization but with larger number of ECC
bits per 64-bit words, e.g., 16-bit ECC for each 64-bit word
[28], which even makes our detection success rate even
closer to perfect.

3.6 Systems without ECC
Some systems do not employ ECC bits, but rather rely on
MAC values that can be co-located with data instead of
ECC bits [8]. For instance, the ECC chips in the DIMM can
be utilized to store the MAC values of the Bonsai Merkle
Tree, and hence allow obtaining data integrity-verification
MACs along with the data. While our description of Osiris
and Osiris-Plus was focused on using ECC, MAC values
can also be used to achieve the exact same purpose; sanity-
check for the used decryption counter. The only difference
is that if there is an error, when ECC bits are used, we
can use the number of mismatching ECC bits as a way to
guess the counter value, whereas MAC values tend to differ
significantly when there is any error in data. Accordingly,
to mitigate this problem, MAC values that are aggregations
of multiple MAC-Per-Word, e.g., 64 bits that are made of 8
bits for each 64 data bits, can be used, thus the difference
between the generated MACs and the stored MACs for
different counter values can be used as a selection criteria
for the candidate counter value. Note our proposed schemes
also work with ECC and MAC co-designs such as Synergy
(parity+MAC) [8].

3.7 Security of Osiris and Osiris-Plus
Since Osiris and Osiris-Plus rely on final verification step
through Merkle Tree, Osiris and Osiris-Plus have security
guarantees and tamper-resistance similar to any scheme
that uses Bonsai Merkle-Tree, such as state-of-the-art secure
memory encryption schemes [4], [6], [8], [13].

4 OSIRIS-GLOBAL

As mentioned earlier, encryption counters can be organized
in different ways; global, local or split counters (Table 2.1.2).
The global (monolithic) counter referred here is similar to
the central counter used in SGX enclave [14], which is incre-
mented by one for every writes to the main memory. On the
other hand, local counters are per-block counters that are
incremented whenever associated memory block is written.
Finally, in split counter scheme, subsequent encryption of
the same block would just increment its split counter value
(7-bit minor counter) by one.

As discussed previously in section 3.3, Osiris employs
stop-loss mechanism in consecutive increment of per-
block counters. However it cannot be directly applied to
global/monolithic counter scheme where only one global
counter records all the writes to the data blocks. In
global/monolithic counter scheme, each write will incre-
ment the global counter, and the corresponding written
block will copy the value of the global counter as its own
counter value. Hence the subsequent updates to a specific
block might lead to a large increment of the associated
global counter value. This is due to the fact that, many
encrypted writes to other blocks are possibly performed in
between these two subsequent writes. Consequently, em-
ploying Osiris in monolithic counter scheme is challenging
as the counter value for a specific block does not increment
consecutively between consecutive block updates, upon
which Osiris’s recovery is based. It is impractical to try out
all the possible values less than or equivalent to the global
counter value to match the Merkle Tree root, since this
immense number of trials could be multiplied by thousands
of lost blocks (due to crash).

Even though Osiris can not be directly applied to global
counter scheme, we still can use a method that reflects
Osiris’s spirit to solve this problem. Similar to phase number
N in Osiris, we will take advantage of a much larger epoch
number (EN), compared to the N value used in Osiris. The
goal of this design is to guarantee that for each stale counter
in memory we can find its up-to-date counter value within
an interval of [Global Counter Value - EN, Global Counter
Value]. To achieve that, we want to persist counters in cache
after every EN writes.

In a naive implementation, whenever a result of the
global counter modulo EN is equal to zero, all the cache lines
in the counter cache could be persisted in main memory.
As such, if a crash happens, the lost counter values in the
counter cache will be at most EN away from those that have
been persisted in main memory. To recover the lost counters,
we can again use ECC bits to identify correct counters from
all possible counter values as depicted in Osiris scheme
(Section 3). However, this process definitely demands more
recovery time compared to Osiris implementation, since the
value of EN is significantly larger than the phase number
N used in general Osiris scheme. Apart from demanding
longer recovery time, this naive implementation can also
slow down or stall the system due to the frequent flushing
of entire cache. Note that EN value is negatively correlated
with the frequency to persist cache lines to main memory. If
the value of EN is chosen to be small, recovery time could
be reduced at the cost of higher frequency to persist cached
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counters. Therefore, the EN value must be chosen carefully.
We expect it to be a relatively large value, in hundreds, or
thousands to reduce the persistence overhead.

To ensure low overheads, we leverage a scheme that
endeavors to reduce the redundant persistence of counters
as much as possible and guarantees the lost counters will be
within the range of [Global Counter-EN, Global Counter].
To this end, we require a volatile hardware-based Epoch
Reference Table (ERT) (Figure. 9) with EN entries, i.e., 1024
as shown in the Figure 9, and it has 8KB for 8 byte counter
addresses and 8KB for 8 byte timestamp, to track the history
of the past EN writes. Additionally, we need to add a
column in counter cache: the timestamp (64-bit) (Figure. 9).
Epoch Reference Table serves to record the counter value
address and the counter updated time for every memory
write. On each write in the counter cache, we consult the
table to find out which counter address was written EN
writes ago by checking the entry index of (Global Counter
Value % Epoch Number), and check whether the counter
value of that old address needs persistence in NVM. If
yes, we persist the counter value to main memory and
update the timestamp of the corresponding cacheline in
cache. Finally, we need to update the entry of current index
with the latest counter write address and write/persistent
timestamp.

Index
(10-bit)

Counter Address
(64-bit)

Timestamp
(64-bit)

1 78FA11 0

ŏ … …

1024 100000C6 100082

Epoch Record Table

Counter Cache

Valid Dirty Timestamp Tag Data

64-bit

Fig. 9. The structure of the Epoch Record Table (ERT) and the counter
cache

The key idea here is that, to determine whether to persist
a counter relies on the comparison result of timestamps for
that counter both in the ERT and in the counter cache. It
should be noted that, if the checked counter cannot be found
in the cache, or it is a hit without dirty-bit set, it must have
been evicted to the memory within last EN writes. Hence no
further efforts need to be done in these cases.

The timestamps in the cache either indicates the latest
update time or the persistence time to main memory. The
timestamp in Epoch Reference Table always reflects the
timestamp the new entry is recorded. Note that, for all the
newly inserted cache lines, their timestamps in cache are
set to 0. Thus if a timestamp of an old entry in the ERT
is larger than the timestamp of the cache line (assuming
that it is found in the cache) in condition that cache line
has the dirty bit set, it indicates the cache line has not been
persisted within recent EN updates. Therefore, we have to
persist it before evicting the old entry. Similarly, if a checked
cache line has a later(larger) timestamp than that from a
table entry, it means the counter in cache has been persisted
recently and hence needs no redundant persistence again.
That is to say the checked table entry can be safely evicted
for a new counter update content. The detailed scheme
of Epoch Reference Table update and counter persistency
is displayed in the algorithm 1. To help the readers to

understand the whole picture of the algorithm, we also
draw a flowchart 10 to diagram the algorithm.

Algorithm 1: Epoch Reference Table Update and
Counter Persistency

Data: Counter Cache(CC), Epoch Reference
Table(ERT), Epoch Number(EN), Global
Counter(GC)

Result: Update ERT for each counter write, and
persist counter recorded in ERT EN writes ago
conditionally

1 Initialization;
2 Timestamp in all cachelines is set to 0;
3 Timestamp in any inserted cachelines is set to 0;
4 All colunms in ERT are set to 0;
5 GC = 0;
6 while MC gets a write request do
7 Update counter in cacheline;
8 TimePoint CurrentTime = current time;
9 GC++;

10 Index i = GC%EN;
11 if ERT[i].Address in CC and Dirty then
12 Tag T=ERT[i].Address/Data blocks’ size for a

cacheline;
13 if CC[T].Timestamp ≥ ERT[i].Timestamp then
14 ERT[i].Address = Counter address with GC

value;
15 ERT[i].Timestamp = CurrentTime;
16 else
17 Write CC[T] to main memory;
18 CurrentTime = current time;
19 CC[T].Timestamp = CurrentTime;
20 CC[T].Dirty = False;
21 ERT[i].Address = Counter address with GC

value;
22 ERT[i].Timestamp = CurrentTime;
23 end
24 else
25 ERT[i].Address = GCth write’s counter address;
26 ERT[i].Timestamp = CurrentTime;
27 end
28 end

When using this scheme, our table behaves like a circular
buffer that helps us know which counter block was updated
EN writes ago. We need flush the block if it exists in the
cache and is dirty and has not been recently persisted.
By doing so, we can ensure that any updated counter
block, if gets lost due to a crash, has a value between
[GloablCounter − EpochNumber,GlobalCounter].

4.1 Write Operation of Osiris-global

The write operation for Osiris-global is shown in Figure
11. The distinguished step in write operation is shown in
3 . After updating the latest counter for the coming write

request in cache, we need to find the entry index in Epoch
Reference Table to record this update. Before updating an
entry in the ERT, we will check the old entry in cache.
There are two cases in which we proceed directly to steps
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Start Send the write request to 
memory controller 

Increment the global 
counter with 1

Send the write request 
with the latest global 
counter value to the 

counter cache

Update dirty bit, timestamp, 
and the counter value in the 

counter cache. If a new 
insert, the timestamp is 0, 

otherwise is the current clock 
time

Calculate the entry Index 
using (Global Counter Value % 
Epoch Number)  and check its 
recorded content in the Epoch

Record Table 

Check the recorded counter 
address in that entry in 

counter cache 

Whether it is a 
hit 

  Yes

No

Whether the 
dirty bit is set

  Yes No

Update the timestamp of 
the latest table entry with 

the current time

Whether 
CacheHit.timestamp > 
TableEntry.timestamp

  No

  Yes

Update the timestamp of the 
latest table entry with the 

current time.

EndEnd

No need to persist the 
counter value to the 

memory

Persist the counter value from 
cache hit (same recorded entry 

address) to the memory.

Sync  the new counter from 
the write request to the Epoch 

Record Table except the 
timestamp

Sync the new counter 
from the write request to 
the Epoch Record Table 
except the timestamp

Fig. 10. The flowchart of Epoch Record Table (ERT) update and counter
cache update

6 and 7 after overwriting the old counter address and
timestamp in the table with the latest write information.
First, if the address in an entry is present in cache, dirty,
and its timestamp in the table is larger than the timestamp
in cache. Second, the counter address of an entry is either
not in cache or not dirty. Otherwise, we have to persist the
counter in the cache to NVMM before moving on to the
subsequent steps.

NVM Memory

Counter
Cache

Epoch
Record
Table

Merkle Tree
Cache

Merkle Tree
Root

MC
Controller

XOR

{Data, ECC(Data)} AES Engine

ECC Encoding Processor Key

IV

Conditionally persist counter
 at the (GC-EN)th writeEvict dirty counter

Check the counter
 recorded at 

the (GC-EN) write

Record the 
counter with the 
latest GC value 

Data + ECC Encryption Pad

Data 

1

2

3
4

5
6

7

Fig. 11. Osiris-global write operation

4.2 Hardware Overhead for Osiris-global

For Osiris-global, the hardware complexity involves a hard-
ware table(Epoch Record Table) and a timestamp column in
the cache. The hardware table has a size less than 18K and
the size of timestamp column of 64-bit roughly introduces
less than 12.5% additional counter cache size. Both are
within an acceptable overhead range.

5 EVALUATION

In this section, we evaluate the performance of Osiris with
other state-of-the-art persistence and recovery schemes. Sec-
tion 5.1 describes the methodology we adopt for our exper-
iments. Section 5.2 discusses the performance impact of the
design for Osiris/Osiris Plus in terms of limit value and the
performance comparison with other cache designs.

TABLE 3
Configuration of the Simulated System.

Processor
CPU 4-core, 1GHz, out-of-order x86-64
L1 Cache private, 2 cycles, 32KB, 2-way, 64B block
L2 Cache private, 20 cycles, 512KB, 8-way, 64B block
L3 Cache shared, 32 cycles, 8MB, 64-way, 64B block

DDR-based PCM Main Memory
Capacity 16 GB
PCM Latencies 60ns read, 150ns write [29]
Organization 2 ranks/channel, 8 banks/rank, 1KB row buffer,

Open Adaptive page policy, RoRaBaChCo address
mapping

DDR Timing tRCD 55ns, tXAW 50ns, tBURST 5ns, tWR 150ns,
tRFC 5ns [13], [29]
tCL 12.5ns, 64-bit bus width, 1200 MHz Clock

Encryption Parameters
Counter Cache 256KB, 16-way, 64B block

5.1 Methodology

We model Osiris in Gem5 [30] with the system configuration
presented in the Table 3. We implement a 256KB, 16-way
set associative counter cache, with a total number of 4K
counters for Osiris and Osiris Plus scheme. Similarly,for
Osiris-global, we implement a 256KB, 16-way, set associa-
tive counter cache based on our cache sensitivity studies.
To stress-test our design, we select memory-intensive as
well as computation-intensive applications to evaluate all
the Osiris schemes. Specifically, we select eight memory-
intensive representative benchmarks from the SPEC2006
suite [31] and from proxy applications provided by the
U.S. Department of Energy (DoE) [32]. For computation-
intensive applications, we use three graph algorithms from
CRONO [33]. The goal is to evaluate the performance and
the write traffic overheads of our design. In all experiments,
the applications are fast-forwarded to skip the initialization
phase, and then followed by the simulation of 500 million
instructions. Similar to prior work [9], we assume the overall
AES encryption latency to be 24 cycles, and we overlap
fetching data with encryption pad generation. Below are the
schemes we use in our evaluation:
No-encryption Scheme: The baseline NVM system without
memory encryption.
Osiris Scheme: Our base solution that eliminates the need
for battery while minimizing the performance and write
traffic overheads.
Osiris Plus Scheme: An optimized version of the Osiris
scheme that additionally eliminates the need for evicting
dirty counter blocks, however, at the cost of extra online
checking mechanism to recover the most recent counter
value.
Osiris-global Scheme: This is a scheme for global mono-
lithic counter which persists the counters by checking
counter’s timestamp with its active counterpart in cache
if present, and maintaining an epoch reference table. This
scheme does not need battery support, however, due to the
large Epoch Number, it will cause multiple-cycle overhead
to identify the correct counter value for each stale counter.
Meanwhile, the number of stale counters and recovery time
is bounded by the Epoch Number
Write-through (WT) Scheme: A strict counter-atomicity
scheme that, for each write operation, enforces both counter
and data blocks to be written to NVM memory. Note that
this scheme does not require any unrealistic battery or
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power supply hold-up time.
Write-back (WB) Scheme: A battery-backed counter mode
encryption scheme with a dedicated counter cache. The WB
scheme only writes to memory dirty evictions from counter
cache. However, WB scheme assumes a battery is sufficient
to flush all dirty blocks in counter cache.

5.2 Analysis
As discussed in Section 3.3, the purpose of Osiris/Osiris-
Plus is to persist the encryption counters in NVM memory
in response to system crash recovery, however, with reduced
performance overhead and write traffic. Therefore, the se-
lection of number N for update interval (also discussed
in Section 3.3) is critical in determining the performance
improvement. As such, in this section, we study the impact
of choosing different N (limit) for Osiris/Osris-Plus on
performance. Next, we present the performance analysis
of multiple benchmarks in response to different persistent
schemes discussed and compared in this paper. Our evalu-
ation results are consistent with the goal of our design for
Osiris and Osiris-Plus.

5.2.1 Impact of Osiris Limit
To understand the impact of Osiris limit (also called N ) on
performance and write-traffic, we vary the limit in mul-
tiples of two and observe the corresponding performance
and write-traffic. Note that only SPEC2006 and DOE Mini
Benchmarks are used for determining Osiris limit and the
average performance of WB and WT are also based on
these benchmarks. The rest of the paper uses all three
type benchmarks including CRONO. Figure 12 shows the
performance of Osiris and Osiris-Plus normalized to no-
encryption while varying the limit. The figure also shows
WB and WT performance normalized to no-encryption to
facilitate the comparison.
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Fig. 12. The impact of Osiris limit on performance.

From Figure 12, we can observe that both Osiris and
Osiris-Plus benefit clearly from increasing the limit. How-
ever, as discussed earlier, having large limit values can cause
increase in recovery time and potentially large number of
encryption engines and ECC units (in case of Osiris-Plus).
Accordingly, it is important to find the point which can no
longer bring in justifiable gains if increased. From the Figure
12, we can observe that Osiris at limit 4 has an average
performance overhead of 8.9% compared to 6.6% and 51.5%

for WB and WT, respectively. In contrast, also at limit 4,
Osiris-Plus has only 5.8%performance overhead, which is
even better than WB scheme. Accordingly, we can observe
that at limit 4, both Osiris and Osiris-Plus perform close to or
outperform the WB scheme even though they do not need
any battery or hold-up power. In large limit values, e.g.,
32, Osiris performs similar to write-back; dirty blocks will
be evicted before absorbing the limit of number of writes,
hence the counter block is rarely persisted before eviction.
In contrast, Osiris-Plus brings down the performance over-
heads to only 3.4% (compared to 6.6% for WB),but again at
the cost of large number of encryption engines.
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Fig. 13. The impact of Osiris limit on number of writes.

A similar pattern is observed in Figure 13 demonstrating
less write traffic for both schemes. At limit 4, Osiris has a
write-traffic overhead of 8.5% whereas WB and WT have
5.9% and 100% , respectively. In contrast, at limit 4, Osiris-
Plus has only 2.6% write traffic overhead. With larger limit
values, e.g., 32, Osiris-Plus has nearly zero extra writes,
while Osiris has write-traffic overhead similar to WB. As
such, we use limit 4 as a reasonable trade-off between the
performance overhead and the required additional stages or
extra checking at the time of recovery.

5.2.2 Impact of Osiris and Osiris Plus persistency on multi-
ple benchmarks

As we now understand the overall impact of Osiris-limit,
i.e., N , on performance and write-traffic, we now zoom-in
on the performance and write-traffic of individual bench-
marks when using limit 4 as suggested in Section 5.2.1.

As we can observe from Figure 14 and Figure 15, for
most of the benchmarks, Osiris-Plus outperforms all other
schemes in both performance and reduction in number of
writes. Meanwhile, for most benchmarks, Osiris performs
close to WB scheme. As noted earlier, Osiris performance
and write-traffic are bounded by the WB scheme; if the
updated counters rarely get persisted before eviction from
counter cache, i.e., updated less than N time, then Osiris
performs similar to WB but without need for battery. Note
that it is not common to have the same counter updated
many times before eviction from counter cache; once a
data cache block gets evicted from the cache hierarchy, it
is very unlikely that it will be evicted again very soon.
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Fig. 15. Osiris and Osiris Plus’ persistence impact the number of writes.However, since Osiris-Plus can additionally eliminate pre-
mature (before N th write) counter evictions, it can actually
outperform WB. There are two exceptions, however. One
is Libquantum, which is mainly due to its behavior of
repeated streaming behavior over a small array (4MB array);
many cache hierarchy evictions due to conflicts, however,
since each counter cache block covers the counters of 4KB
page, many evictions/writes of the same data block will
result in hits in the counter cache. Accordingly, a WB
scheme performs better as there are few evictions (write-
backs) from counter cache compared to the writes due to
persistence of counter values at each N th write in Osiris and
Osiris-Plus. Another exception is TSP(Traveller Salesman
Problem), which is an NP problem that requires tremendous
computation, but no need for any memory-write access(See
Figure 15). Since no write is involved, any write-optimized
schemes will not help this application in terms of perfor-
mance, no exception for Osiris or Osiris Plus. Similarly, WT
will work the same as WB scheme. That is why we see
no performance gain or difference among all the schemes
evaluated. However, we observe that with larger limit value,
such as 16, Osiris-Plus clearly outperforms WB (7.8% vs.
14% overhead), whereas Osiris performs similarly. In sum-
mary, for all benchmarks, Osiris and Osiris-Plus performs
better than strict-counter persistence (WT) and very close
or even better than battery-backed WB scheme. In addition,
we also tested some aggressive cases, such as read latency

300ns and write latency 1000ns. On average, the Osiris-Plus
outperforms WB in both execution overhead and number of
writes; Osiris, although slightly degraded, is still very close
to WB scheme’s performance.

5.2.3 Impact of Epoch Number
Recall that in Osiris-global, we introduce an epoch num-
ber(EN). Accordingly, before we record updated counter
address present in counter cache to an entry of Epoch Ref-
erence Table, we need to check whether to persist a counter
address written EN times ago in that specific entry. First, we
did a sensitivity study to determine the appropriate EN to
use in our experiments and the result is shown in Figure
16. The comparison demonstrates that the larger the EN is,
the impact on performance is more close to WB scheme and
with a longer recovery time because of too many trials one
has to attempt to identify a data-and-ECC match. As such,
we pick 1024 as our Epoch Number.
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5.2.4 Osiris-global persistency on multiple benchmarks
As we did for Osiris/Osiris Plus, we conducted the sensitiv-
ity study for Osiris-global. Since global counter compared to
split counters does not provide good spacial coverage, hence
the overall counter cache miss rate is high, even at the size of
4M(11.4% miss rate) in Figure 17. It is admitted that the miss
rate decreases with a large cache size but such performance
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Fig. 18. The impact of Osiris-global on performance.

improvement is not very significant. When increasing the
cache size from 256K to 4M, it only reduces the miss rate
by 6.5% . Considering a cache takes the major space of the
processor chip and requires large amount of transistors and
energy, we traded off the miss rate gains for small size of
256K as the cache size for Osiris-global.
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Fig. 19. The impact of Osiris-global on number of writes.
Our results in Figure 18, show that using EN of 1024,

the overhead of Osiris-global on average is comparable to
that of Osiris/Osiris Plus. On average, the execution time
overhead is an extra 3.88% to WB scheme. For some ap-
plication, such as Libquantum, the percentage of overhead
normalized to WB scheme could reach as high as 10%, which
is consistent with its performance under Osiris scheme. For
computation-intensive graph algorithms, their behavior on
performance are similar to the memory-intensive applica-
tion except TSP and we know it is because TSP is a no-
write application. Meanwhile, the average number of writes
under Osiris-global scheme in Figure 19 causes additional
17.2% overhead in comparison to WB scheme and is 62.4%
lower than WT scheme. Besides, Pennant, Lulesh and
Simplemoc contribute the most write overhead, all above
20%. This phenomenon is due to temporal write correlation
pattern of application update. For graph algorithms, we
observe a closing gap between WT and WB in terms of
number of writes. This is because graph algorithms have a
higher miss rates than their memory-intensive counterparts
(3-folder higher), which leads to frequent write-backs. In

summary, the results obtained for performance and number
of writes under Osiris-global matches our expectation, that
is, to outperform WT scheme but is worse than WB scheme
in an acceptable range.

5.2.5 Recovery Time
At recovery time in a conventional NVM system, the Merkle
Tree must be first reconstructed as early as the first memory
access. The process will build up the intermediate nodes and
the root to compare it with that kept inside the processor.
To do so, it will also need to verify the counters’ and data
integrity through comparison with the MAC calculated over
the counter and data.

Baseline Osiris, in the worst case scenario of a crash,
probably have lost all the updated counter cache blocks,
i.e., 2048 64B counter blocks for a 128KB counter cache.
During recovery, the memory controller will iterate over all
encryption counters and build the Merkle Tree. However
for counters that have a mismatched ECC, an average of
4 trials (when N equals 8) of counter values will be tried
before finding the correct value. Thus, for a 16GB NVM
memory, there will be 256M data blocks and 4M counter
blocks. Assuming that reading a data block and verifying
its counter takes 100ns, then in a conventional system we
need 100ns× 256M which is roughly 25.6 seconds.

In Osiris, only 131072 counters (corresponding to the lost
2048 counter blocks) will require additional checking. In the
worst case, each counter has been updated 8 times, which
will need 131072 × 8 × 100ns extra delay, which extends
the recovery time to 25.7 seconds – only an additional 0.4%
recovery time. Also note that Osiris overhead depends on
the counter cache size. Using large NVM memory capacity
will significantly reduce the overhead percentage due to an
increase in actual recovery time. When multiple AES are
introduced onto a chip using Osiris Plus scheme, due to
parallelism, the recovery time will be even shorter than what
we estimated.

Similarly, for the monolithic counter scheme, the addi-
tional recovery time is bounded by 131072× 1024× 100ns,
which is roughly 13.1 seconds. However, note that the over-
head is constant and only affected by the cache size, thus for
large memory sizes the overhead would be marginal. For
instance, if we use 1TB memory, the recovery time overhead
will be less than 1%, and becomes much smaller for larger
memories. After a second thought, since we are unlikely
to persist counters within the range of [Global Counter-
Epoch Number, Global Counter] after a crash event, it also
means there are Epoch Number of stale counters present
in memory at most if not considering other uncorrectable
errors on counters. So the recovery time can be reduced to
1024×1024×100ns, which is only 0.102 seconds. Although
we can take use of multiple AES engines for Osiris-global
for recovery, it is not necessary because Osiris-global does
not affect regular read/write operation like Osiris plus does.

In contrast, as mentioned in the paper, Osiris-Plus de-
ploys parallel engines that check all possible values in par-
allel, which means that even for wrong values the detection
and verification latency will be similar to those of the correct
counters and the correct counter values will be used to
build upper intermediate levels. Accordingly, there is no
additional overhead in the recovery time for Osiris-Plus.
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However, this requires extra parallel ECC and AES engines.
Note that most modern processors have multiple memory
channels and a high degree of parallelism in memory mod-
ules, which makes the cost of 100ns to sequentially access
and verify each block be conservative. We estimate recovery
time to be even faster for both conventional systems and
Osiris.

6 RELATED WORK
In the following, we review the related NVM security work,
mostly with respect to encryption and memory persistence.
NVM Security: Most research work advocate the counter-
mode encryption (CME) to provide strong security while
benefiting from short latency due to the overlap of
encryption-pad generation with data fetch from memory
[4], [6], [13], [34], [35], [36], [37]. Since one of the fun-
damental works that introduced the global,local counter
schemes, and devised split counter [10], optimization works
are carried out based on this fundamental model. DEUCE
[6] proposes a dual-counter CME scheme that only re-
encrypts the modified word for each write. SECRET [34]
integrates zero-based partial writes with XOR-based energy
masking to reduce both overhead and power consump-
tion for encryption. ASSURE [35] further eliminates cell
writes of SECRET by enabling partial MAC computation
and constructing efficient Merkle Tree. Distinctively, Silent
Shredder [4] repurposes the IVs in CME to eliminate the
data shredding writes. More recently, Synergy [8] describes
a security-reliability co-design that co-locates MAC and
data for data reconstruction due to single-chip error and
for reducing the overall memory traffic. The latest work
[38] also uses de-duplication to increase the endurance of
secure NVM. In contrast with prior work, our work is the
first to provide a security-reliability guaranteed solution for
persisting encryption counters for all memory blocks.
Memory Persistence: As a new technology with proper-
ties of main memory and storage, persistent memory has
promising recovery capabilities and the potential to replace
main memory. Thus it attracts much attention from both the
hardware and software research communities [39], [40], [41],
[42]. Pelley [43] refers memory persistence to constraints of
write order with respects to failure and proposes several
persistence models in either strict or relaxed way. DPO [44]
and WHISPER [45] propose persistent frameworks using
strict and relaxed order, respectively, with different gran-
ularity. In our design, we assume conventional persistence
model, i.e., cacheline flushing ordered by store-fencing, e.g.,
CLWB then SFENCE, to persist memory locations [46], and
we focus on the persistence from a hardware perspective.

The most related work to ours is counter-atomicity [13].
Counter-atomicity introduces a counter write queue and
a ready bit to enforce the write persistence of data and
counter from the same request to NVM at the same time. To
reduce the write overhead, counter-atomicity provides some
APIs for users to selectively persist self-defined critical data
along with their counters, hence relaxes the need for all-
counter persistence. Another work that came later also tried
to solve a similar problem [16]. In their work, they use write-
through cache policy to guarantee the crash consistency.
For transaction log and data, they use split counter spacial
coverage to reduce the write number. Osiris tackles the same

problem but through persisting counters periodically in en-
crypted NVMs. Osiris relies on ECC bits to provide sanity-
check for the used encryption counter and helps with its
recovery. While our solution does not require any software
modification and is completely transparent to users, it is
orthogonal to and can be augmented with selective counter-
atomicity scheme. Moreover, Osiris and Osiris-Plus can be
used in addition to selective counter-atomicity to cover
all memory locations at low-cost, hence avoiding known-
plaintext attacks discussed earlier in Section 3.1. The work
discussed in this paper considers failure as a broad concept
[43], whereas some work specifically handle power failure,
such as WSP [47] and i-NVMM [5]. Using residual energy
and by relying on battery supply, WSP and i-NVMM can
persist data and encryption to NVMM. However, in our
case, we do not require any external battery back up for
counter persistence rather rely on ECC-based sanity-check
for counters recovery and application-level data persistence.

7 CONCLUSION
We propose a novel scheme called Osiris that persists en-
cryption counters to NVM similar to strict counter persis-
tence schemes but with significant reduction in performance
overhead and NVM writes. We also propose an optimized
version, Osiris Plus, that further improves the performance
by eliminating premature counter eviction. We then discuss
how Osiris can work and be integrated with state-of-the-
art data and counter integrity verification (ECC and Merkle
tree) for rapid failure/counter recovery. Additionally, we
devise an Osiris Global scheme for global(monolithic) en-
cryption counter. The scheme is write-friendly compared
to the strict WT scheme but is not as optimal as WB
scheme with battery support. But it significantly reduces
the recovery time for stale counters. We use our scheme to
compare with other memory persistency schemes in respec-
tive of trade-off between hardware complexity and perfor-
mance. Our evaluation in eleven representative benchmarks
shows desirable performance overhead and NVM writes
via employing Osiris/Osiris Plus in comparison with other
schemes discussed. For future work, we will study different
ways to additionally persist Merkle Tree intermediate nodes
for faster recovery.
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