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Abstract—Despite continuous defense efforts, DDoS attacks are still very prevalent on the Internet. In such arms races, attackers are
becoming more agile and their strategies are more sophisticated to escape from detection. Effective defenses demand in-depth
understanding of such strategies. In this paper, we set to investigate the DDoS landscape from the perspective of the attackers. We
focus on the dynamics of the attacking force, aiming to explore the strategies behind the scenes, if any. Our study is based on 50,704
different Internet DDoS attacks across the globe in a seven-month period. Our results indicate that attackers deliberately schedule their
controlled bots in a dynamic fashion, and such dynamics can be well captured by statistical distributions. Furthermore, different botnet
families exhibit similar scheduling patterns, strongly suggesting their close relationship and potential collaborations. Such
collaborations are further confirmed by bots rotating in multiple families, and such rotation patterns are examined and confirmed at
various levels. These findings lay a promising foundation for predicting DDoS attacks in the future and aid mitigation efforts.

Index Terms—DDoS, Measurements, Attack Scheduling.

1 INTRODUCTION

Internet Distributed Denial of Service (DDoS) attacks have been a
challenge for many years. Today, many DDoS attacks are launched
via different botnets, set of hosts connected to the Internet and
infected by a malicious software, i.e., malware. Recent years have
witnessed the rapid increase of such DDoS attacks in terms of both
their numbers and the volumes, and various studies and reports
highlighted their devastating operational impact [2], [3], [4], [5],
[6]. For example, according to a recent report [7], the duration,
intensity, and diversity of attacks are on the rise: a year-over-year
analysis shows that the average DDoS attack size has increased by
245% in the fourth quarter of 2014, compared to the same quarter
of 2013, and by 14% from the previous quarter of the same year,
with an average attack of 7.39 Gbps.

While it is very difficult to estimate the actual monetary
loss due to DDoS attacks, since targeted victims are often very
secretive about their losses, one can view that in the grand scheme
of losses due to malware and associated cyberspace activities:
according to a recent study [8], direct and indirect costs due
to breaches of malware are estimated at $491 billion in 2014
alone. Given that DDoS attacks are one major security threat, we
anticipate that they contribute greatly to those figures of losses. As
a matter of fact, today botnet-based DDoS attacks have become
a mainstream commodity in the cybercrime ecosystem, where
they could be rented or loaned to launch malicious activities, and
botmasters can make sizable income by utilizing those botnets.

Simple and conventional DDoS attacks are easy to mitigate,
thus DDoS attackers evolved over time to make it harder for
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a defender to address their threat. Driven by profits generated
to the cybercriminals launching those attacks and the lifted bar
by the ever-improving defense mechanisms, DDoS attacks and
attacking strategies are becoming increasingly sophisticated [9],
[10]. Therefore, a timely and an in-depth understanding of the
latest trends of DDoS attack and strategies utilized for launching
them is a key to a deeper insight in this essential phenomenon, to
improve existing defenses, and to realize new ones.

To understand the fundamentals of DDoS attacks, their opera-
tion, and potentially to defend against them, enormous efforts are
continuously made in both academia and industry, which resulted
in many published results and findings [11], [12], [13], [14] (more
on that is in section 6). However, most of our understanding
of DDoS attacks driven from the state-of-the-art is based on
indirect traffic measurements and static characterization of DDoS
attacks [12], [14], [15], [16], [17], [18]. On the contrary, our
previous study shows that most DDoS attacks today are not widely
distributed, but are rather highly regionalized [14]. Furthermore,
most of such characterizations only touch the surface of attackers’
strategies, making them far from sufficient for us to design
effective defenses against many attacks, or even understand DDoS
attacks sufficiently. This paper builds on such prior work to better
understand and model DDoS attacks and their dynamics.
Contributions. Motivated by the current state of the related art,
and to help guide (and perhaps win) the arms race of the DDoS
attack and defense, we set out to investigate the attacking strategies
of typical and recent DDoS attacks behind the scenes. For this pur-
pose, we explore the attackers’ strategies in deploying the attack
force, focusing on the dynamics and control of the attack forces
in different DDoS attacks. Towards that, we contribute a model
for characterizing geographical dynamics of DDoS attackers (§3)
and use it to characterize both country-level bot rotation (§4)
and family-level bot scheduling (§5). Our study is based on a
DDoS dataset collected for a period of 7 continuous months. Our
dataset is provided by the monitoring and attribution unit in a
DDoS mitigation company in the United States, with partnerships
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with various major and global ISPs. The data was collected from
August 28, 2012 to March 24, 2013, a total of 209 days, over a
period of about seven months of valid and marked attack logs.
In this seven-month period, a total of 50,704 different DDoS
attacks were observed. Through our analysis, we find several
interesting results. Some highlights of those findings include new
characterizations of bot scheduling patterns, botnet shift patterns,
and attack patterns, summarized as follows:

o Bot scheduling patterns. We found that a botnet family
often uses a limited number of sophisticated patterns
in dynamically scheduling bots to participate in various
DDoS attacks. This dynamic scheduling is featured by the
shifting patterns of participating bots.

« Botnet shift patterns. We observe that bot shifting pat-
terns in different botnet families can be well captured by
certain statistical distributions, with parameters of such a
distribution dependent on the corresponding family. We
highlight such distributions, and discuss their potential in
further modeling DDoS attacks and botnet behavior.

e Attack patterns. Among all bots participating in DDoS
attacks, some bots have a periodic attacking pattern. In
particular, they switch between multiple botnet families to
evade defense, and such patterns can also be mathemati-
cally characterized and modeled.

Implications and Broader Impact. The behavioral patterns that
we unveil in this study are direct results of the management
strategies of attackers in using their bots to launch the various
attacks and attack campaigns. These findings not only refresh
and refine our understanding of today’s Internet DDoS attacks—a
finding that is important in and of itself, particularly for attributing
DDoS attacks based on their behavioral characteristics—but also
offer new insights for security analysts to identify botnet families
and help predict how the attacking forces evolve over time during
attacks. This insight can help further enhance the existing defense
mechanisms, and perhaps highlight new defense avenues. To the
best of our knowledge, this study is first of its kind in unveiling
the attacking strategies and dynamic patterns in DDoS attacks,
especially patterns that are observed from real-world attack data
of various botnet families at the same time.

Organization. The rest of the paper is organized as follows. In
Section 2, we describe our dataset including the overall data
statistics and the data fields we utilized for our analysis. In
Section 3, we define our dynamic model at the country-level,
including the notions of shift pattern. In Section 4, we study
the country level bots rotation behavior, including intra-family
analysis, bot shift modeling, and inter-family analysis. In section 5,
we study the family-level bots rotation, including intra- and cross-
family rotation and characteristics. We discuss related work in
Section 6 and conclude with a concise summary of our analyses
and their implications in Section 7.

2 DATASET AND COLLECTION METHODOLOGY

The dataset we use in this study is based on a constant monitoring
of Internet critical infrastructure to aid intelligence gathering
concerning the state of the DDoS attack posture, using both active
and passive measurement techniques. In the following we review
the data collection, criteria, and high-level characteristics.

2.1 Data Collection

The unit responsible for collecting the data for intelligence pur-
poses constantly monitors Internet attacks and associated attacking
traffic to aid the mitigation efforts of its customers, using both
active and passive measurement techniques. For active measure-
ments and attribution, malware families used in launching the
various attacks are reverse engineered, and labeled to a known
malware family using best practices [19], [20]. An enumeration
technique, similar to the ones proposed by Kang et al. [21], and
combining other command and control signals, as in [22], are used
to enumerate bots participating in each botnet studied in this paper.
As each botnet evolves over time, new generations are identified
and marked by their unique hash values, and used for grouping
bots and attributing their activities to the given generation.

While we believe that no dataset collection method can

eliminate all possible sources of bias, and even though there
might be some potential skewness in our dataset, our preliminary
studies using the dataset indicate that our dataset still preserves
various invariant features that facilitate accurate and insightful
analysis. Such invariants particularly include geographical features
of botnet and associated families [2], [14], [15]. In mapping the
geographical location of the bots and augmenting the dataset
to include network features, such as operator and Autonomous
System (AS) number, we use a commercial grade and timely
mapping service that is updated daily [23] to address potential
IP dynamics on the accuracy of location analysis.
Collection Criteria. Traces of traffic associated with various
DDoS campaigns are collected at various anchor points across
the globe in cooperation with various ISPs. The traces are then
analyzed to attribute and characterize attacks on various targets.
The collection criteria followed in obtaining the dataset utilized
in our study aim to reduce the amount of unnecessary traffic
analysis. To this end, the collection of traffic is guided by two
general principles that are consistent during the entire period of
data collection. First, the source of the traffic logged in our data
should be an infected host participating in a DDoS campaign
and belongs to a family among the families we are interested in
analyzing and understanding. Second, the destination (target) of
the traffic is a targeted client, as concluded from eavesdropping
on C&C of the campaign using a live sample [24], or where the
end-host is a customer of the said DDoS mitigation company.

2.2 High-level Characteristics

The analysis of the collected traces is high level in nature to cope
with the high volume of ingested traffic at peak attack times;
as shown later, on average there were 243 simultaneous verified
DDoS attacks launched by the different botnets studied in this
work. High level statistics associated with the various botnets and
DDoS attacks are recorded every hour. The workload we obtained
covers the period from August 28, 2012 to March 24, 2013,
providing a total of 209 days of activities (about seven months
of valid and marked attack logs). In the log, a DDoS attack is
labeled with a unique DDoS identifier, corresponding to an attack
by a given DDoS malware family on a given target.

Table 1 sums up some of the essential and high level statistics
of our dataset, including information at both the attacker and
the target sides. Over a period of 28 weeks, 50,704 different
DDoS attacks were observed. These attacks were launched by
674 different botnets (where each generation as defined previously
with a unique hash value is counted as a unique botnet). These
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TABLE 1: Summary of the workload information

Summary of Attackers Summary of Victims
description [ count description [ count
# of bot_ips 310950 # of target_ip 9026
# of cities 2897 # of cities 616
# of countries 186 # of countries 84
# of organizations 3498 # of organizations | 1074
# of asn 3973 # of asn 1260

attacks targeted victims located in 84 different countries, in over
600 cities, involving over 1000 organizations, residing in 1260
different autonomous systems. In our analysis, we focus on the
botnets involved in DDoS attacks. However, our prior work in [2],
which is orthogonal to this work, contains more details on each
botnet family, their activities, and associated patterns.

The attackers’ IP information enables us to study the geolo-
cation distribution and associated features of each botnet family.
Contrary to the traditional understanding of DDoS attacks featured
by a group of vastly distributed malicious actors, the attacks,
characterized by the participating bots and affected targets, are
not very distributed but are rather highly regionalized, as shown
in [14]. Furthermore, each family has its own geolocation prefer-
ences. Among all the families, we notice that Dirtjumper covers
the largest number of countries; a total of 164 countries, followed
by Optima’s spread over 153 countries. Even though these families
have very broad country coverages, the average number of bots
participating in each attack pertaining to those botnets is small.

3 ATTACK DYNAMICS: MODEL

To seek an in-depth understanding of attackers’ strategies and
dynamics, we set out to explore attacks from the adversary’s
perspective. By doing that, we are motivated to find out how
their controlled bots are scheduled and then used to participate
in various DDoS attacks. To this end, we use the IP information
of the bots captured in our dataset to perform such analysis. Our
analysis starts off with two different perspectives, namely the bot
shift pattern dynamics and the multi-owned bot attacking interval,
both of which are related to DDoS attack strategies. We do this
analysis by measuring the country-level bots rotation (§4) and
family-level bots rotation (§5).

DDoS attacks evolve over time in terms of their attacking
power (a.k.a. force, which is measured by the number of attacking
bots that indicate the attack magnitude [13]). In our dataset, each
entry represents a snapshot of the DDoS attacks captured at that
point in time. We thus can represent the dynamic of each DDoS
attack by analyzing each data record, and draw conclusions on the
dynamics of the attacking force at various levels.

3.1 Dynamics Characterization

For each entry in our dataset corresponding to an attack, we have
the IP address information of all the bots participating in that
DDoS attack at that given time, of which the country code (cc)
could also be obtained from such information (keep in mind that
the snapshots are updated hourly as discussed in §2). After further
organizing the bots based on their country code, each entry in the
dataset can be denoted by

_ i . i
vec; = (cc} :nl,cch nd, ... ccl, inl), (D

where each ccg .4 € [1...m] represents the country code where
the bots are located at time j. We use n}, where i € [1...m] to

denote the number of bots located in cc/, for i € [1...m)], at time
7. Since each of such vectors represents a time series of snapshot
of the activities of a botnet with a certain interval, we can use them
to understand the dynamics of the botnet activities as follows
First, we align all vectors belonging to the same DDoS attack
together based on the country code, and observe the dynamics
(deployment difference of bots) by comparing the number of bots
in each country and the number of countries involved in this attack.
For example, let vec; and vecy be two arbitrary vectors defined
as in Eq. (1). We calculate the change in the numbers of bots
participating in the attack and indexed by the country as:

ik ik
vec; —vecy = {ec]” "t Ay, el TR D A) =veea,. (2)

Notice that the lengths of vec; and vecy, (e.g., m; and my)
in Eq. (2) may not be the same and the length of veca ,, namely
r = |veca,|, will be the size of the union of vec; and vecy,
(i.e., the length will be the total number of unique countries in
both vectors that make the result up). Furthermore, we define the
length of veca, as r = |veca, | to quantify the changes in the
number of bots involved in an attack. In Eq. (2), we define A, for
an arbitrary index z where 1 < z < r as:

o k
n; if cc] € vec; and cc; & vecy,
if cc}, € vecy, and ccl, & vec; 3)
[ng —n;| if cc? € vecy and ecd € vec;

Az =\ "k

An alternative approach to the representation of those vectors
is to normalize the vectors by expressing each of them with all
existing countries so that they have the same length. However,
due to the locality feature presented by the attacking source [25],
most elements of the vector would be zero in such normalized
representation, which results in a poor utilization with a sparse
representation of the location information—although calculations
would be made simpler. Since the set of the involved countries
are usually unknown a priori, it is more reasonable to use variable
length vectors. Otherwise, we would have to use the entire 195
countries to represent each vector for our case. In addition, fixed
length vectors are aligned country by country. Thus Euclidean
distance could only capture the universal similarity of the shift
vectors. Instead, variable length vectors generate optimal pattern
matching via dynamic warping. As a result, individual similarity
of the shift vectors, which presents a stronger indication of the
attackers’ strategies and dynamics, could be characterized as well.
To this end, we use the variable length vectors and their difference
to reflect the changes of the bots numbers at the country level for
the given attacks.

3.2 Shift Expectation

To further quantify such changes and dynamics more abstractly
and in a comparable way, we use the notion of shift expectation
to represent each attacking force shift. As the name of the
notion indicates, each vector described above as multiple values is
represented by a single value called the shift expectation. In this
way, each DDoS attack can be denoted by a vector whose elements

are shift expectation, denoted as
(Eshiftys Eshiftas - Esniftn,)-

Justification. This characterization is particularly reasonable since
each DDoS attack can be denoted by a time series of snapshots
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capturing the attack forces at various points in time. The value of
the above vector is determined by both the number of attacking
bots (magnitude changes, i.e. veca ) that have happened in each
attack, as well as the number of snapshots of each attack (i.e.
length of the vector, which indicates the length of the attack in
hours, as highlighted in §2).

Calculation. The shift expectation is calculated as follows:

m
Benipe = »_pi X A, 4)
i=1
where A; is obtained from veca, in Eq. (2) and p; denotes
the probability estimator of the shift. The values of the probability
estimator p; in Eq. (4) are computed as follows:

1) From our dataset, we obtain the geolocation information
of all bots involved in the DDoS attacks.

2) For each family, we generate a table that has two
columns, where the first column contains all country
codes where bots participating in this family reside while
the second column has the corresponding number of bots
that are located in that country. Each entry in this table is
denoted by (cc;,m;), fori € [1...1].

3) pi, wherei € [1...1], is calculated as

= 5)
P = .
22:1 nj

With both p; in Eq. (5) and 4A; in Eq. (2), the expectation of
each shift F/g5;¢; can be calculated according to Eq. (4).

After converting each DDoS attack into a time series vector,
we have all the vectors with various lengths for all the DDoS
attacks in our dataset. Our following analyses is built on top of
these vectors and using the notion of shift expectation in Eq. (4).

4 COUNTRY-LEVEL BOTS ROTATION

With the previously outlined model of shift and dynamics, we
perform intra-family analysis (in §4.1, where we show that par-
ticipating bots in attacks have the same shifting pattern), bot
shift patterns characterization (§4.2, where we show that bot shift
patterns can be well captured by certain probability distributions)
and inter-family analysis (§4.3, where we highlight indicators of
collaborations across multiple families).

4.1 Intra-family Analysis

To use the shift expectation for understanding the intra-family
patterns, we need a normalization step to reduce the number
of patterns into a manageable size. One possible approach for
normalization and to reduce the dimensionality of the data is via
clustering. While there are multiple approaches to perform clus-
tering, including DBSCAN and hierarchical clustering, we chose
to use the K-means clustering algorithm. The reason we choose
K-means over other possible clustering algorithms is that both
hierarchical clustering and DBSCAN require certain knowledge
about the data we want to cluster beforehand. For example, the
data density for DBSCAN or a measure of dissimilarity between
sets for hierarchical clustering are required for utilizing the afore-
mentioned algorithms. As a result, we find K-means clustering a
more intuitive and simpler way to perform clustering based on the
number of botnet families we have.

Since the lengths of vectors may vary, we cannot calculate the
Euclidean distance between vectors directly. On the other hand, the

Dynamic Time Warping (DTW) has been widely used for shape
matching and time series classification, where compared vectors
in that domain are not necessarily with the same length, similar
to the problem settings at hand. Accordingly, we use the DTW
to calculate the distance and similarity between the various attack
vectors as represented earlier. To reduce the distortion under the
influence of attack magnitude, we normalize the vectors using the
Euclidean norm before we calculate the DTW distance. In the
following we present the results of analysis and their implications.

4.1.1 Results

The K-mean clustering algorithm aims to group an arbitrary
number of observations into a fixed number of clusters, K, and
requires such a parameter to be fixed in advance for its operation.
We cluster the various vectors into 5, 10, and 20 clusters. We
however observe that clustering them into 10 clusters yields better
results, which we select as our parameter for the number of
clusters, and present the results for the two largest clusters as a
demonstration of the findings, and for brevity. Notice that such
criterion of selecting K is widely accepted and known in the
literature, which bases the final number of the quality of the
obtained clusters.

Figure la and Figure 1b illustrate two of the four largest
clusters discovered by the K-means algorithm of the Dirtjumper
family, where K = 10. The two clusters contain 54 and 24 attacks,
respectively. In each figure, the x-axis represents the length of the
attack vector, i.e., the shifts happened in a single attack; the y-axis
represents the unique DDoS ID; and the z-axis represents the shift
expectation of each shift. Note that since Dirjumper has too many
DDoS attacks with different lengths of shifts, we first group the
attacks by size. In this study, we focus on the analysis of attack
vectors that have more than 100 shifts, which include 242 attacks
launched by Dirtjumper.

In these figures, the expectations should be discrete values. To
more clearly show the changes, we use lines to connect these dots.
Figure la shows that in these attacks, bots are being scheduled
with the exact same pattern in different attacks, while Figure 1b
indicates a similar pattern—although not identical—in different
attacks. With further inspection, we find that in Figure 1a there are
46 simultaneous DDoS attacks ongoing towards the same target
located in Finland, which is a company providing communication
services from basic broadband to high-speed fiber connections.

Notice that the type of attacks analyzed and modeled in
this paper are still of paramount importance today, despite the
existence, equal importance, and prevalence of other significant
types of attacks that are also worth studying. In particular, we limit
our attention to those attacks for several reasons. First, we do so
because they are more likely to cause significant damages in real
world applications instantaneously, as opposed to low-rate attacks
intended for interrupting services by the mere persistence. Second,
modeling low-rate and lightweight DDoS attacks, while important,
might not generate meaningful nor interesting results on the
various aspects highlighted earlier in this paper, and demonstrated
in the majority of the attacks observed in this study. We note
that while we use a single dataset to drive the main modeling
analysis, the number of verified attacks is large enough to reveal
generalized results and benefit the community in various ways
through characterization and guided defenses.
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Fig. 1: Shift pattern of the Dirtjumper DDoS botnet family.

4.1.2 Implications

These results suggest that the attacking forces are not randomly
scheduled by the attackers in Dirtjumper. Also, simultaneous
attacks cannot be arranged by a completely random deployment
strategy. There has to be certain strategies behind DDoS attacks
launched by each family. To see if such a pattern is specific to
Dirtjumper or generalizable to others, we examine other families.
Figure 2a and Figure 2b illustrate two clusters of another active
botnet family, namely Pandora. We use the same K-means clus-
tering technique with 10 clusters for attacks and more than 100
shifts as before. We have similar observations on Pandora as on
Dirtjumper. Other families also exhibit the same pattern (figures
are omitted). These findings of consistent pattern across multiple
families we studied also suggest that such characteristics can be
perhaps leveraged to detect DDoS attacks based on these shift
behaviors. But this only will be possible if we can precisely model
these pattern, which is the aim of our next contribution.

4.2 Bot Shift Patterns Modeling

Findings in the previous section on understanding the characteris-
tics of shift patterns of bots are intriguing, and may potentially
be meaningful in devising techniques to thwart attacks. How-
ever, such findings would be more meaningful only if one can
predict those patterns. One way to pursue such direction is to
understand how various mathematical distributions can capture
the shift patterns. To further explore the pattern behind these
vectors, we first find the centroid vector of each cluster and then
calculate the distance between each attack vector in that cluster
and the centroid. We use Dirtjumper as an example to highlight
this process, since it is the most active family.

4.2.1 Results

The cumulative distribution function (CDF) of the distance distri-
bution for Dirtjumper is shown in Figure 3. In this figure, each
curve represents a cluster. By carefully observing these curves, we
find that the distances seem to follow the normal distribution very
well except for cluster-1. To verify the distribution, we further
fit the data into multiple distributions, including tlocationscale
distribution, normal distribution, logistic distribution and extreme
value distribution. The fitting results are shown in Figure 4.

Except for the extreme value distribution, all other distribution
functions are symmetric distributions. Figure 4 shows that the data
fit the tlocationscale distribution best. tlocationscale distribution
is the generalized Student’s t-distribution into location-scale fam-
ily. Location-scale family is a family of univariate probability
distributions parameterized by a location parameter and a non-
negative scale parameter. The tlocationscale distribution is useful
for modeling data distribution with heavier tails than the normal
distribution, meaning that it is more prone to producing values that
fall far from its mean. This makes it useful for understanding the
statistical behavior of certain types of ratios of random quantities.
Nonetheless, this still indicates that the shift behaviors are pre-
dictable with the help of advanced time series modeling tools,
such as Autoregressive Integrated Moving Average (ARIMA)
algorithm, among others. In this case, the distribution describes the
distances between multiple shift patterns of botnets. It also means
that if we use the centroids of different clusters as baseline, we can
learn and predict how bots will shift based on this distribution.

4.2.2 Potential Explanation

While there is potentially many explanations for this trend, none
of those explanations alludes to an arbitrary behavior, but rather
a controlled and systematic behavior. One explanation is that it
is likely that attackers are utilizing this feature to arrange and
control bots during attacks, especially with a large number of bots.
Intuitively, such control is determined by the number of active bots
during the attack, and has perhaps little to do with the time of the
day in isolation. A further analysis that includes the time of the
day in which the attacks happen is out of the scope of this paper,
although perhaps worth investigating in the future.

From the defense perspective, such shift information can be
very useful. On one hand, with this information—even though
there might be more than one shift pattern per family—we can
predict how attacks shift based on the distribution. On the other
hand, we can simulate DDoS attacks behaviors, not only based on
traffic volume but also by incorporating dynamics behind them.
Generalization to Other Families. We further explore by mea-
surements whether such trend is applicable to other families. First,
we apply the same analysis to the Pandora family. Similar to
Figure 3, we also plotted a CDF for Pandora’s clusters, which
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Fig. 2: Shift pattern of the Pandora DDoS botnet family.
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confirmed similar behavioral patterns. However, compared to
Dirtjumper, Pandora exhibits a slight deviation in the distribution,
perhaps due to the smaller number of attacks launched by the
Pandora botnet family compared to those launched by Dirtjumper.

Finally, results that were obtained by analyzing other families
reveal similar findings, and highlight the power of mathematical
distributions in fairly easily characterizing the shift patterns and
revealing scheduling strategies.

i Size | Max_Diss | Avg Diss | Diameter | Separation | Avg_Exp | Max_Exp Std
97 3.69 0.18 373 3.46 0.03 0.74 0.076
4 74 0.06 0.02 0.09 3.62 0.03 0.63 0.08
20 452 1.46 4.99 2.39 0.025 0.88 0.073
—>cluster_10 | 17 3.48 0.41 3.48 2.39 0.028 0.68 0.075
e |l 7 418 1.06 430 357 0.03 088 0.08

4.2.3 Other Statistical Characteristics

Besides the pattern clustering graphs, we statistically analyze the
different observed clusters. For that, Table 2 summarizes some
statistical information about Pandora’s clusters. In this table the
following are defined. 1) Size shows the size of each cluster.
2) Max_Diss represents the maximum distance between any two
vectors in the same cluster. 3) Diameter shows how large are the
different clusters. 4) Separation represents the minimal dissimi-
larity between an observation of the cluster and an observation of
another cluster. 5) Avg_Exp shows the average shift expectation
of each cluster. 6) Std is the standard deviation of expectations of
each cluster. Statistically, the smaller the Diameter, the better the
cluster. From this table, we can easily see that the second cluster is
the best, which also conforms with Figure 2a. Though Max_Diss
is larger than Separation in some clusters, both values are dictated
by extreme values for each cluster. Thus, Avg_Diss and Diameter
provide better reference for measurement of goodness of clusters.
Another observation from this table is that for most clusters the
Diameter is larger than the Separation, meaning that these clusters
are not totally isolated. A total isolation means that the patterns
might be attack-specific. However, results show the opposite:
each cluster still shares some similarities with other clusters. This
further indicates that there might be certain dynamic mechanisms
behind each family call for further investigation.

4.2.4 Shift versus Attack Duration

One of the most important indicators of the persistence of an attack
is the attack duration. For that, we attempt to understand how
the attack duration is related to the shift pattern. Interestingly,
we observe that the total shift expectation of a DDoS attack is
inversely proportional to the length of the attacks, as shown in
Figure 5. To make it clear, we truncate the figure by eliminating
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attacks longer than 200. We confirm that this finding is consistent
across multiple families, as highlighted in the following.

First, and to highlight the finding across multiple families,
we include five active families in this measurement: Blackenergy,
Colddeath, Dirtjumper, Optima and Pandora. As before, each
DDoS attack is represented as a vector of shift expectations.
The total expectation of each DDoS attack can be calculated as
the sum of the whole vector. We then classify these vectors into
different groups based on their lengths and calculate the average
shift expectation within the same group. Thus, these attacks will
be represented by groups of data pairs, denoted by the length of
the attack and the averaged shift expectation. Finally, we use the
non-linear least squares [26] to fit a function to these data points
as shown in Figure 5.

Observations. First we calculate the standard error of the estimate
for each family to measure the accuracy of the fitting. For all
five families, the standard distances of the data points from the
fitted lines are about 0.033, which are less than the average values
and indicate that the fitted results are representative. Accordingly,
the result clearly shows that the total shift expectation of DDoS
attacks is inversely proportional to the length of the attacks. This
means that the total shift expectation of attacks are basically the
same no matter how long the attacks may last. This again can
help us predict how the attacks are going to evolve by using the
non-linear function. While the curves of Dirtjumper and Pandora
are almost identical, the same pattern is seen between Optima
and Blackenergy. These findings highlight two pairs of families
with very high similarity, possibly because of related malware
generation and collaborations. Thus, if we already know the
relationship between multiple families, we can predict how similar
the shift patterns will be for these families. Conversely, as more
and more botnets start to collaborate with each other, this will help
reduce the complexity of analyzing and detecting them.
Implications. This finding is particularly useful to targets that
suffer persistent and long DDoS attacks because as the attack goes
on, the attacking forces tend to stay stable, making it easier to
identify the attackers. On the other hand, it also suggests that the
early stage of DDoS attacks is very crucial for defense since the
probability of success decreases dramatically afterwards.

4.3

In all results thus far, attack vectors have been shown to be
composed of periodic-like spikes, which makes us wonder whether
these vectors could be shared across multiple families based

Inter-family Analysis

on their resemblance. Also, from our previous static analysis
of various features of attacks, we have discovered collaborating
botnet families [14]. To verify that they are actually collaborating,
we follow a similar approach, and highlight further supporting
evidence to such findings.

Notice that the purpose of the analysis in this section (as
well as the analysis in Section 5) is to show the phenomenon of
collaboration; inter and intra-family, as well as resources rotation
(at the family level). Such phenomenon is not applicable to all
attacks, and only finding attacks that exhibit the phenomenon
using the tools proposed in this work is sufficient for our analysis,
justifying the restriction of our analysis to those attacks that have
those characteristics. We do not claim that the phenomenon is
universal.

4.3.1 Results

For this analysis, we first conduct the clustering on the two most
active families, Dirtjumper and Pandora. Figure 6a and Figure 6b
show two of these clusters. This analysis of collaboration shows
449 attacks launched by Dirtjumper and Pandora in total, of which
234 were launched by Dirtjumper and the rest were launched by
Pandora. We cluster these attacks into 20 clusters and then check
which clusters involve collaborations. For the first collaboration,
there were seven attacks from Dirtjumper and 74 from Pandora.
For the second, there were 17 attacks from Dirtjumper and one
attack from Pandora. Similarly, Figure 7a and Figure 7b show
the results of clustering of Dirtjumper and Blackenergy. They
are differentiated by different line styles with different colors;
Dirtjumper is represented by a solid green line, whereas Pandora
is represented by a dotted blue line and Blackenergy is represented
by a dotted red line.

Collaborations involving more than two families can be dis-
covered by classifying attacks into different groups based on the
bot shift pattern. Figure 8a and Figure 8b show two examples.
Figure 8a shows the clustering results of attacks whose length is
smaller than 50 shifts: this collaboration involves seven Optima
attacks, one Colddeath attack and one Blackenergy attack. Same
as in the previous figures, different families have been denoted by
different colors. Except for Dirtjumper, Pandora and Blackenergy,
Optima is denoted by dotted cyan line and Colddeath by dotted
black line.

4.3.2 Results Interpretation

The results confirm that shared shift patterns exist in different
families. Looking into these attacks, we also find that these attacks
were targeting different targets and are launched at different times.
Traditionally, we could not detect collaborations between botnet
families unless they launch attacks towards the same target or at
the same time. However, such sophisticated collaborations can be
revealed by the shared shift pattern among families. Furthermore,
for the first collaboration, these exact 15 Dirtjumper attacks are
also launched in a collaboration with Pandora (not shown in Fig-
ure 6a nor Figure 6b). This means that Pandora and Blackenergy
have potential collaborations. More importantly, the same shift
pattern applied to multiple attacks is more likely to come from the
same group of bots, which may be very active in launching DDoS
attacks. We will further examine these bots in Section 5.
Similarly, and for collaborations that include more than two
families, similar interpretations are produced on Figure 8a and
Figure 8b. All of these figures show the same patterns as in the
previous figures, although applied to new families, and indicate
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that the potential collaboration is a universal feature among
botnet families in launching DDoS attacks. The bots involved in
collaborations might be the main attacking forces of this botnet
family, they may live longer than other bots, and they may also
cause more damage. We will discuss that more in Section 5.

In summary, this analysis shows that collaborations for launch-
ing attacks are prevalent, and are done between two or more
families. As a result, these collaborations will inevitably make
the defense more difficult than when done against a single family,
especially if the defense included attribution in the wild. Finally,
as a recommendation, we notice from our analysis that the targets
that are often attacked by a certain botnet family should stay alert
of DDoS attacks from other collaborating families as well.

5 FAMILY-LEVEL BOTS ROTATION

In section 4, we discussed the country-level bots rotation, where
the rotating bots might be distributed across several countries.
Rotation is also an aspect that can be associated with a single
family, and studying individual family’s rotation patterns might
highlight the various (and different) behavioral traits of different
families. Accordingly, in this section we focus on measuring and
discussing the implications of family-level rotation of multi-owned
bots. Multi-owned bots here refer to the bots involved in multiple
DDoS attacks at different times. Such DDoS attacks could be
launched by a single botnet family (c.f. §5.1) or by multiple
families (c.f. §5.2).

Feature Extraction and Families Selection. We extract infor-
mation associated with all bots belonging to each family and sort
them based on the timestamps when the DDoS attacks happened
while they are involved in such attack. In this way, each bot
in the dataset has a string of timestamps indicating its attack
participation history. Our analysis starts from intra-family rotation.
For highlighting the findings, we focus on Dirtjumper, Pandora,
Blackenergy and Optima because they have the largest number of
multi-owned bots.

5.1 Intra-family Analysis

In the following, we review findings and implications of multi-
owned bots, their activity level, and rotation patterns.

5.1.1 Multi-owned Bots

We first study basic statistics of multi-owned bots for these four
families. The results are shown in Table 3. In Table 3, the second
column represents the percentage of multi-owned bots among all
bots belonging to that family; and the third column represents
the percentage of DDoS attacks which involved multi-owned bots
among all the DDoS attacks launched by that family. From this
table, we first observe that for Pandora more than 60 percent of the
bots reappeared, which may indicate that the defense mechanisms
targeting Pandora are not very effective or that Pandora botnet
is adaptive, and is successful in covering its behavioral and
detectable features and trails. While for the other three families,
and even though the percentages of multi-owned bots are not very
high, they were involved in over one-third of all attacks. This
means that studying the behavior of multi-owned bots is necessary
and may help mitigate DDoS attacks.

TABLE 3: Statistic Information of Multi-owned Bots

Family Multi-owned bots (%) || Attacks by multi-owned bots

Pandora 62.66% 92.16%

Optima 18.48% 43.16%
Dirtjumper 12.67% 38.75%
Blackenergy 14.08% 32.79%

5.1.2 Activity Level

We now characterize these bots based on the length of their
“history”, which is the number of DDoS attacks they are involved
in. We choose this approach to analysis mainly because it is
easier to perform. Accordingly, we classify these bots into five
different categories based on the length: [2, 10), [10, 20), [20, 40),
[40,80) and [80, 00). The statistical result is shown in Figure 9
and explained in the following.
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Fig. 9: Statistics of Multi-owned Bots

In Figure 9, each bar on the z-axis represents a botnet family
while the y-axis represents the number of multi-owned bots and
the number on top of each bar represents the percentage of bots
that have involved in more than 10 DDoS attacks. It is evident
that the bots in category [2, 10) are much more than in any other
category. After further looking into the data, we found that in
category [2,10), most bots recorded got involved in only two
DDoS attacks. Not only that it is not very helpful for the analysis
with two attack intervals, but also bots involved in more DDoS
attacks are much more critical for defense since they will cause
more damage. As such, all of the following analyses will focus on
bots that participated in more than 10 DDoS attacks.

5.1.3 Rotation Patterns

To better understand and characterize multi-owned bots behavioral
rotation pattern, we will use attack intervals to illustrate rotation
activities. Since each DDoS attack comes with a timestamp, it is
convenient to calculate the time interval between two successive
DDoS attacks. The attack interval combined with the total lengths
of attacks is a metric we use to measure the rotation activities of
multi-owned bots. Based on that, we first extract all bots belonging
to the category described above. Then we can obtain a sequence
of time intervals for each multi-owned bot.

Next, similar to what we did for the shift pattern analysis, we
first try to fit these attack intervals with different distributions,
including the generalized pareto distribution, the exponential
distribution, the tlocationscale distribution and the logistic dis-
tribution. The results of all four families are shown in Figure 10a
through Figure 10d.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2808344, IEEE
Transactions on Dependable and Secure Computing

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 10
20 ; T 20 ; T
[Clempirical [Clempirical
18 ——generalized pareto | 18 - ——generalized pareto |
—tlocationscale —tlocationscale
16 exponential H 16 | exponential H
—logistic —logistic
314 b 3‘14 r 1
212 8 212 8
Q [
(=] [=]
210 1 210 b
|8 1 | 8f 1
E-] E-1
o [<
a 6 b a 6 J
4 b 4r- 4
2 b 2+ 1
0 L, L oo oo Il 0 AR L oAl I’ It
-0. 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0.2 0.4 0.6 0.8 1 1.2
Multi-owned Bot Attack Interval Multi-owned Bot Attack Interval
(a) Distribution fit for Dirtjumper (b) Distribution fit for Pandora
20 ; T 16 ; T
[CJempirical [CJempirical
18 —generalized pareto |- —generalized pareto
—tlocationscale 14 - —exponential I
16 exponential H tlocationscale
—beta 12 - —logistic H
2 ] z
212 | 1 210 ¢ 1
) [
(=} (=]
210 b 2 8 1
8 8- 8 | . |
o a 6
< [
o 6 b o
4+ |
a4l |
2l | |
0 e ___ | e e
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Multi-owned Bot Attack Interval
(c) Distribution fit for Blackenergy

Multi-owned Bot Attack Interval
(d) Distribution fit for Optima

Fig. 10: Multi-owned bots and their attack intervals (used for indicating the activity level).

In Figure 10a through Figure 10d, the bars represent the
empirical probability density while the curves represent the fitted
distribution based on the empirical results. From these four figures,
we can observe that all of the intervals follow the generalized
pareto distribution best. Similar to the exponential distribution,
the generalized pareto distribution is often used to model the tail
of another distribution. Usually, the model built on top of the
generalized pareto distribution is used to fit extremes of complex
data. The generalized pareto distribution also plays a vital role
in network modeling. Most QoS research assumes exponential
arrivals for ease of modeling. Some previous work, e.g., Feldmann
et al.’s [27] and Harchol-Balter et al.’s [28], show that most of the
Internet traffic is better modeled with a heavy-tailed distribution
such as the generalized pareto distribution.

5.14

Such trend in distribution indicates that the botmaster maintains
a certain attacking strategy to manage his own bots because
of the diverse patterns of attack intervals of multi-owned bots
to avoid detection. On the positive side, this means that the
defense mechanisms can utilize such patterns of multi-owned bots
to make fine-grained botnet attack simulations. Combined with
previous shift patterns, DDoS attacks could be reconstructed more
accurately. Besides the intra-family multi-owned bots, there are

Interpretation and Implications

also a large portion of bots rotating across-multiple families. These
bots make the detection more difficult. Thus, it is important that
we study their behaviors as well.

5.2 Cross-family Analysis

To analyze the behavior of cross-family bots, we first need to
extract this kind of bots from our dataset and the basic statistical
results are shown in Table 4. In this table, we only list the four
families we studied in last subsection. However, bots sharing
is common among all botnet families. From this table, we can
observe that family Dirtjumper/Pandora, Dirtjumper/Optima and
Dirtjumper/Blackenergy share the most bots, indicating that they
may have more collaborations with each other than any other
family pairs. Some collaborations have been confirmed in 4.3.

5.2.1 Attack Interval and Activity Level

The statistical result of cross-family multi-owned bots is shown in
Figure 11. Based on the same reasoning, we focus on the analyses
of bots that are involved in more than 10 DDoS attacks for cross-
family multi-owned bots. Note that among these bots, there are
909 bots active in more than two families. 669 of them have been
active in three families and the rest have been in all four families.
Our following analyses target the bots that only rotate between
two different families.
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TABLE 4: Statistic Information of Cross-family Multi-owned Bots

- Optima | Dirtjumper | Blackenergy
Pandora 797 4224 580
Optima - 29400 1021
Dirtjumper - - 2900

Similar to the inter-family analysis, we use the attack interval
to represent rotation activities. We again fit the attack intervals
of cross-family bots to multiple distributions. As a result, we
obtained almost identical results to the intra-family analysis. We
omit the figures for brevity. As before, the intervals also follow the
generalized pareto distribution, but with different parameters. This
further confirms that some attacking strategies are also applied to
multi-owned bots across families since it is less likely that they
switch to another family on their own. The rotations between
different families make the attacking behavior more complex and
thus more difficult to defend against. Knowing the rotation interval
pattern, however, sheds some light on predicting the rotation
behavior.

In addition to the attack intervals, another very important
factor for the cross-family multi-owned bots is their activity levels,
denoted by how often they switch to another family. To quantify
their activity levels, we sort the attack activities from both families
of multi-owned bots we got previously in time order. Then we
label each activity in this sequence with either O or 1 depending
on which family they belong to when the attack happened. In
this way, the activities of these bots are simplified into a binary
sequence. Next, we quantify the activity level through the changes
in the sequences, either from O to 1 or the other way around. Thus,
the activity level is calculated as the ratio of the number of family
switches over the total activity counts. Accordingly, the activity
level should be a number between O and 1, and is interpreted as
the closer it gets to 1, the more active the bot is. The CDF of the
activity levels is shown in Figure 12

In Figure 12, the z-axis represents the activity levels, while the
y-axis represents the CDF. From this figure, we observe that about
80% of the bots have an activity level less than 0.45, meaning that
bots are not very active in terms of family switches. For defenses,
this is a good indicator, since if bots are more likely to stay in
one family, then their behaviors do not change rapidly either.
Of all the bot activities, the most active bot switches between
family Dirtjumper and Optima alternatively. It even stays active in
both families during the same time interval involving two different
DDoS attacks launched by these two families, respectively. Such

Cross-family bots activities
Fig. 12: CDF of cross-family bots activities

behaviors help bots evade detection easily.

5.2.2 Comparing Activity Levels

Now that all the activities of cross-family multi-owned bots are
simplified as binary sequences, we are able to compare these
sequences numerically. Because there are too many sequences
involved, we first classify them into different categories based on
their length. From the basic statistical results we obtain for these
different categories, we find that the bots that have between 10
and 20 activities are the majority. Also, bots activities are much
more intensive in category [10, 20) than any other intervals. After
further investigation, we found that there are 515 bots that have 11
activities in group [10, 20). For demonstration of results, our next
analysis focuses on this particular group.

Since all bots in our studied groups have the same length, we
are able to compare them by calculating the distances between
them via the Hamming distance. In information theory, the Ham-
ming distance between two strings of equal length is the number
of positions at which the corresponding symbols are different.
In other words, the Hamming distance measures the minimum
number of substitutions required to change one string into another,
or the minimum number of errors that could have transformed one
string into another. In our case, we use the Hamming distance to
measure the similarity of two binary sequences, where a higher
similarity indicates higher rotation consistency. Next, we use K-
means to cluster this group of bots into multiple clusters, where the
distance matrix is obtained by calculating the Hamming distance
between each pair of bots. The bots belonging to this group can
be clustered into 10 isolated clusters. The clustering results of the
two largest clusters are shown in Figure 13a and Figure 13b.

In Figure 13a and Figure 13b, the x-axis represents the length
of bots activities, while the y-axis represents the label for different
families, which is either O or 1. For a clear visualization of the
results, the y-axis has been adjusted to [—1,2] in the figure.
Each marker in the figure represents one activity and each bar
connecting the markers indicates family label switching. The
different colors of the bars denote different rotation patterns. For
example, in Figure 13a, there are two colors of the bars, red and
yellow, which means there are two rotation patterns in this cluster.
However, only one of the bars has markers on both ends, meaning
that these two rotation patterns are almost identical except one
activity. Based on this observation, we can infer that the bots in
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Fig. 13: Rotation patterns for various clusters.

this cluster rotate almost identically. We further looked into the
dataset and found that there are 114 bots in this cluster, and they
belong to the botnet families Pandora or Dirtjumper. Figure 13b
is similar to Figure 13a, although with more rotation patterns.
There are four different rotation patterns and they belong to all
four botnet families.

Note here that we have only analyzed bots of the same activity
length since the Hamming distance can only be calculated between
two sequences of the same length. We also tried the Dynamic
Time Warping as we did with the bot shift pattern, but initial
findings indicate that it is not efficient and effective when dealing
with a large amount of binary sequences. To this end, we leave
addressing this issue as a potential future work, where we will try
other similarity metrics to further explore the rotation behavior of
cross-family multi-owned bots.

5.2.3 Further Interpretation and Implications

The above analysis shows how important it is to understand the
behaviors of multi-owned bots, both at the intra-family and inter-
family levels. Not only because that the multi-owned bots can
cause more damage, but also because their repeated appearances
prove the difficulty to take them down. They also provide a new
angle to look into the attacking strategy utilized by the attacker,
which will benefit the security community by refreshing our
knowledge of botnet DDoS attack behaviors. From the defense
perspective, the behavior of single bot might be more of interest
since there is no effective method to isolate malicious bots from le-
gitimate requests. The existence of such behavior pattern provides
a possibility to achieve this goal.

6 RELATED WORK

DDoS attacks have been intensively investigated and numerous
measurement works have been done to help achieve better un-
derstanding of them. In 2006, Mao et al. [13] presented their
measurement work of DDoS attacks relying on both direct mea-
surement of flow-level information and more traditional indirect
measurements using backscatter analysis. Findings in this work
are a decade old, and our findings in this paper update such results
in various ways. Moore et al. [29] conducted a backscatter analysis
for quantitatively estimating DoS activity in the Internet based
on a three-week dataset. Due to the growth of network address
translation and firewall techniques, much of the Internet was
precluded from the study by the traditional network measurement

techniques. Our study relies on 7 months observation of large
number of botnets.

In 2005, Casado et al. [11] proposed an opportunistic mea-
surement approach that leverages sources of spurious traffic, such
as worms and DDoS backscatter, to unveil unseen portion of
Internet. The monitoring of packets destined for unused Internet
addresses, termed as “background radiation”, proved to be another
useful technique to measure Internet phenomenon. In 2004, Pang
et al. [30] conducted an initial study of broad characteristics of
Internet background radiation by measuring traffic from four large
unused subnets. A recent study [31] revisited the same topic and
characterized the current state of background radiation specifically
highlighting those which exhibit significant differences. Our work
serves as a revisit to those studies with new insights, and utilizes
direct measurements of DDoS attacks, as indirect measurements
through inferences using backscatter.

Similar in purpose to the tool utilized in obtaining our data,
Bailey et al. [32] designed and implemented the Internet Motion
Sensors (IMS), a globally scoped Internet monitoring system to
detect Internet threats, which includes a distributed blackhole
network with a lightweight responder and a novel payload sig-
nature and caching mechanism. Xu et al. [33] presented a general
methodology to build behavior profiles of Internet backbone traffic
in terms of communication patterns of end-hosts and services.

All of the aforementioned studies rely on static analysis of
DDoS attacks. So far little has been done to analyze the dynamics
of DDoS attacks. Gu et al. [6] designed and developed a new
detection framework by utilizing clustering analysis of botnet
communication patterns in 2008. Based on this work, in 2010,
Perdisci et al. [34] presented a novel network-level behavioral
malware clustering system. Lu et al. [5] proposed a new approach
for detecting and clustering botnet traffic on large-scale network
traffic payload signatures. The emergence of these malware be-
havior analyses indicates that researchers start to expand the
traditional static measurements and explore the dynamics. Our
work explores yet unrevealed aspect of today’s DDoS attacks
through their dynamics.

In our work, we focus on DDoS dynamics. We use sev-
eral techniques including K-means clustering and Dynamic Time
Warping (DTW). DTW was first introduced in the data mining
community in the context of mining time series proposed by
Berndt et al. [35]. Several techniques have been introduced to
speed up DTW and to reduce the space overhead [36], [37]. The
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K-means clustering methods we use were first proposed by Lloyd
et al. [38], and remains a very popular method for clustering
after many years perhaps due to its simplicity and effectiveness
in practice. These techniques successfully helped us discover the
principles of the dynamics behind the scenes.

While remotely related, there has been a lot of work in the
literature on various aspects of the design of (DDoS) attacks and
defenses. This line of work includes the kinds of Kang et al.’s [39],
[40], [41], Schuchard et al.’s [42], [43], Li et al.’s [44], Walfish
et al’s [45], among others [46], [47], [48], [49], [50]. While
broadly related, they mainly treat protocol-level characteristics for
defenses, and do not handle or take into account strategies of the
attacker. We believe that findings in this study can guide defenses
proposed in those works and validate (or invalidate) their attacks
and defenses. Pursuing such research direction of a data-driven
approach to defenses is an open direction that we would like to
pursue in the future.

7 CONCLUSION

DDoS attacks remain one of the most challenging threats on
the Internet, despite numerous efforts to characterize, model, and
defend against them. This indicates that increasingly sophisticated
strategies are being employed by the DDoS attackers. Success-
ful defenses demand in-depth understanding of their strategies.
In this work, we have conducted an analysis on a large scale
DDoS dataset, aiming to uncover the dynamics of the DDoS
attack strategies behind the scenes. With the help of Dynamic
Time Warping and clustering, we have found that attackers are
deliberately and dynamically deploying their attack forces in
individual or collaborative attacks, indicating the strong bond
and organization of different botnet families in various attacks.
Furthermore, such dynamics can be well captured by statistical
distributions. Contrary to conventional understanding of botnet,
we discovered that some bots rotate in different families, and such
rotating patterns can also be mathematically characterized. These
results add to the existing literature of DDoS characterization and
understanding. More importantly, they lay a promising foundation
for us to predict the dynamics during a DDoS attack in the future,
which could be utilized to enhance existing defenses.
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