
1

Semantics-Preserving Node Injection Attacks
Against GNN-based ACFG Malware Classifiers

Dylan Zapzalka, Saeed Salem, and David Mohaisen

Abstract—To increase security for devices connected to the internet, research has gone into using Graph Neural Networks (GNNs) to
inhibit the spread of malware through detection. GNN classifiers that use Attributed Control Flow Graphs (ACFGs) have demonstrated
favorable results in classifying software binaries as malicious or benign. In this work, we show that such classifiers are vulnerable to
Adversarial Examples (AEs) by proposing several grey-box adversarial attacks that perform node injection and preserve the semantics
of a program. We demonstrate that adversaries can take advantage of the aggregation properties of GNNs to apply effective
perturbation outside of the original ACFG nodes of a software binary through node injection. We conducted experiments on our
methods and compared them against two similar semantics-preserving adversarial attacks. Our results have shown that our methods
of applying perturbation through node injection can result in higher evasion rates while decreasing the amount of perturbation needed
to fool detectors. Namely, we deliver an evasion rate of up to 94.83% with only 2.49% of total perturbation, in comparison with a
maximum evasion of 79.50% at 2.78% perturbation by a state-of-the-art approach and only 27.44% at 2.95% perturbation by the
baseline attack. Our results highlight the need for creating more robust GNN malware detectors.

✦

1 INTRODUCTION

MALICIOUS software, also known as malware, is one
of the most significant threats to users and data

security today [1], [2]. As users increasingly move online
for social media, shopping, and work, the already high
costs associated with malware threats have been rising [3].
For instance, ransomware—a type of malware that blocks
access to a computer system by encryption until a ransom is
paid—was expected to have cost 20 billion dollars globally
in 2021 [4]. To combat malware, researchers have been
developing effective deep neural network-based models to
inhibit the spread of malware through detection [5]–[14].

One class of neural networks that has recently gained re-
searchers’ attention for malware detection is Graph Neural
Networks (GNNs). Through the use of static graph features
obtained from software binaries, GNNs can adequately
capture traditionally used information, such as opcodes [5]
and n-grams [6] while capturing the structural information
that makes up the program through the graph’s topology.
GNN models that use Attributed Control Flow Graphs
(ACFGs) for malware classification, such as MAGIC [10]
and HawkEye [11], produce favorable results with a variety
of GNN architectures, including DGCNN [15] and GCN
[16]. Moreover, they have demonstrated other advantages,
including supporting cross-platform malware detection on
multiple systems and architectures [11].

Despite success in classifying malware, GNNs are vul-
nerable to Adversarial Examples (AEs) [17], samples that are
intentionally created to misclassify a model by adding small
worst-case perturbations. In the case of malware classifica-
tion, there is an enormous incentive for malicious actors to

• D. Zapzalka is with the Department of Computer Science at North Dakota
State University (e-mail: dylan.zapzalka@ndsu.edu).
S. Salem is with the Department of Computer Science and Engineering at
Qatar University (e-mail: saeed.salem@qu.edu.qa).
D. Mohaisen is with the Department of Computer Science at the Univer-
sity of Central Florida (e-mail: mohaisen@ucf.edu).

generate AEs: one AE that bypasses a malware detection
system could lead to stolen sensitive information, loss of
access to systems, or damage to critical infrastructure [18].

To better understand the vulnerabilities of deep learning
models for malware detection, researchers have proposed
numerous algorithms for generating AEs. For instance,
Abusnaina et al. [19] proposed a method of fooling deep-
learning-based malware detectors called GEA, which works
by embedding the Control Flow Graph (CFG) of a benign
software binary into a malicious software binary. Build-
ing upon this idea, SGEA [20] was proposed to reduce
perturbations by only injecting a small subgraph into the
original sample. Both works, however, are limited to CNN-
based malware detectors. Other methods have focused on
generating AEs for GNN-based malware detectors. Zhang et
al. [21] proposed a reinforcement learning algorithm called
the Semantics-preserving Reinforcement Learning (SRL) at-
tack that injects semantic nop instructions into the original
ACFG nodes of a software binary. The semantic nop instruc-
tions ensure that the functionality of the original software bi-
nary is preserved as the injected instructions are executable.
Research has also been done in developing GNN AEs that
work by changing the graph structure. One such algorithm,
called VGAE-MalGAN [22], changes the graph structure by
injecting nodes and edges into an existing API graph via
a Generative Adversarial Network (GAN) [23]. Although
each of these algorithms can produce effective AEs, there
currently exists no algorithm that exploits ACFG node in-
jections to create semantics-preserving AEs for GNN-based
malware detectors.

In this work, we address this problem by developing
realistic, semantics-preserving AEs to fool GNN-based mal-
ware classifiers by injecting artificial nodes into an ACFG. To
create a semantics-preserving AE for software binaries, we
are limited in the type of perturbation we can add directly to
the executable section of the AE. For instance, suppose that
to generate worst-case perturbation via a gradient-based

mailto:dylan.zapzalka@ndsu.edu
mailto:saeed.salem@qu.edu.qa
mailto:mohaisen@ucf.edu

2

method, e.g., the Fast Gradient Sign Method (FGSM) [24],
we needed to add an arithmetic instruction to the executable
section of the software binary. If we were to naively inject
a line of assembly code such as ADD EAX 7, we would be
changing the semantics of the program, which could lead
to the failure of the AE. Thus, when adding perturbation
to a part of the program that is executable, we are limited
to injecting semantic nop instructions, e.g., ADD EAX 0. A
more serious problem arises when we must take away an
instruction to generate an AE. It is clear that removing any
executable instruction without an equivalent replacement
would change the functionality of the AE. One way of trying
to get around this issue would be to remove and replace
the instruction with new code that satisfies the require-
ments of functionality preservation and adding effective
perturbation. However, this scenario is difficult at best for
an adversary to carry out. Therefore, given the restrictions
of preserving the semantics of a program, a method like
FGSM can only apply perturbation uni-directionally to the
executable part of the software binary.

To solve the problem of adding perturbation, we pro-
pose new and efficient grey-box gradient-based methods for
generating AEs over the ACFG of a program. Our methods
of generating AEs, called Semantics-preserving Node In-
jection Attack (SNIA), Semantics-preserving Multiple Node
Injection Attack (SMNIA), and Semantics-preserving Node
Injection Clustering Attack (SNICA), work by exploiting the
aggregation steps of GNNs to indirectly apply perturbation
to the executable portion of the AE without changing its
functionality. To do this, we generate and connect inexe-
cutable artificial nodes to a subset of the executable nodes
of the original ACFG. Such a method has a multitude of
benefits in contrast to adding perturbation directly to the ex-
ecutable portion of the ACFG. First, since the artificial nodes
are not executable, we can add any perturbation to them
without changing the functionality of the program. Through
this step, the adversary can mimic applying perturbation bi-
directionally to the executable portion of the software binary
by aggregating perturbation from an inexecutable artificial
node. Another benefit of this approach is the reduction of
the total amount of perturbation needed to fool a model.
Through our approach, one artificial node can connect to
multiple different original ACFG nodes to multiply the
effect of its perturbation throughout the graph instead of
having a similar perturbation added multiple times.

Contributions. In this paper, we make the following con-
tributions. 1) We investigate ways to exploit the aggrega-
tion property of GNNs to generate semantics-preserving
AEs that follow several defined constraints. 2) We propose
novel gradient-based methods of AE generation for ACFG
malware classifiers by injecting inexecutable nodes. 3) We
evaluate the proposed methods on a real-world dataset and
show their effectiveness. To the best of our knowledge, this
is the first work that examines semantics-preserving AEs in
the context of GNNs exploiting the aggregation step.

Organization. The organization of this paper is as follows.
The related work is presented in Section 2. In Section 3, we
introduce the background required for understanding the
rest of this paper. In Section 4, we present the generation
of AEs, including our problem formulation, gradient-based

methods for adding perturbations, and our new methods
of creating AEs. Our experimental evaluation is presented
in Section 5. Discussion and future work are presented in
Section 6. Concluding remarks are drawn in Section 7.

2 RELATED WORK

Much research has been conducted on generating AEs
through gradient-based techniques. Goodfellow et al. [24]
proposed the Fast Gradient Sign Method (FGSM) that gen-
erates AEs by adding perturbations in the same direction
of the gradient of the cost function with respect to the
input data. Although applicable with some care to the
software domain, their original work was intended in the
image domain. Kurakin et al. [25] later proposed an iterative
version of FGSM that adds perturbations in the direction
of the gradient multiple times. Such methods work very
well when the target model’s architecture and parameters
are known, however, an adversary cannot use them if they
have no access to the internal details of the model. A method
introduced by Papernot et al. [26] solves this problem by
introducing a substitute model that trains over a synthetic
dataset. FGSM can then be applied to the substitute model
to generate AEs for the target model.

The utilization of a surrogate model has previously
been employed to create AEs GNN malware detection sys-
tems [27]. Zhang et al. [21] used a substitute model for
the Semantics-preserving Gradient based Insertion (SGI)
adversarial attack that works by injecting semantic nop
instructions into ACFGs. Semantic nop instructions have
also been added to the original nodes of an ACFG through
a reinforcement learning algorithm called the Semantics-
preserving Reinforcement Learning (SRL) attack [21]. An-
other gradient-based approach developed by Yumlembam
et al. [22] uses a Generative Adversarial Network (GAN)
algorithm called VGAE-MalGAN to create AEs for GNN
malware classifiers that use Android API graphs. VGAE-
MalGAN creates AEs by injecting new nodes and edges into
an existing API graph using a generator and a substitute
detector.

Other methods can be used to create AEs for malware
detectors without using the gradient. Abusnaina et al. [19]
proposed an adversarial attack for CNN-based models that
use CFG features called GEA. The attack works by embed-
ding a benign software binary inside of a malicious target
software binary such that the benign software binary code
is never executed. Absunaina et al. [20] later built upon GEA
by introducing sub-graph embedding and augmentation
(SGEA) to reduce the amount of perturbation required to
cause misclassification. As noted earlier, their work is only
limited to CNN-based detectors, and it is unclear if their
performance will generalize to other architectures.

Previous research has also focused on node injection
adversarial attacks for GNNs, which is the most closely
related line of work to our work. Tao et al. [28] proposed two
different node injection attacks that are limited to injecting
a single node. The first is an optimization-based approach
called OPTI whereas the second attack called Generalizable
Node Injection Attack (G-NIA) speeds up the slow opti-
mization process through the use of a parametric model.
Another node injection attack called Topological Defective

3

Graph Injection Attack (TDGIA) by Zou et al. [29] works by
combining a topological defective edge selection strategy
with a smooth feature optimization objective to generate
the node-feature vector for the injected node. The tests
on TDGIA were limited to leveraging the topology of the
first-level neighborhood of a graph, and it is unclear how
similar algorithms would perform when considering greater
levels of neighborhood information. Recently, Fang et al. [30]
proposed a node injection strategy called Global Attacks
via Node Injections (GANI), which injects nodes while still
maintaining structural similarity through a degree sampling
operation. Similarly, Chen et al. [31] introduced the Harmo-
nious Adversarial Objective (HAO), a constraint that allows
AEs to become more unnoticeable to defenses by making
sure that maliciously injected nodes preserve homophily.

3 BACKGROUND

In this section, we review the preliminaries required for
understanding the rest of this work. Namely, we review
background information on graphs (section 3.1), graph neu-
ral networks (section 3.2), control flow graphs generated
through software binaries (section 3.3).

3.1 Graphs
A graph, denoted as G = (V,E), is a mathematical object
consisting of two finite sets: the vertex set and the edge
set. The vertex set V = {v1, v2, ..., vn} contains the graphs
vertices, also called nodes, and the edge set E ⊆ {(vi, vj) ∈
V 2 and vi ̸= vj} contains pairs of distinct vertices referred
to as edges. Graphs can also be represented by a matrix
called the adjacency matrix. An adjacency matrix A that
represents a graph of order n is an n × n matrix where
each entry aji is 1 if there exists an edge connecting vi
to vj ; otherwise, the entry is equal to 0. Graphs in some
circumstances may have node-feature vectors Xv for v ∈ V .
These node-feature vectors are stacked to create a node-
feature matrix X where the ith row of the matrix represents
the feature vector of the ith vertex of the graph.

3.2 Graph Neural Networks
Graph Neural Networks (GNNs) are a class of neural net-
works used to perform predictions on graph-based data.
Given a graph G = (V,E) with a node-feature matrix X ,
the goal of a GNN is to learn a representation vector hv

for every v ∈ V to perform either node, edge, or graph
classification. We denote the representation vector at layer
l for node v as hl

v and we initialize h0
v = Xv . Through

one or more GNN layers, hl
v is updated by aggregating its

neighbors’ node representation vectors as well as hl−1
v itself.

After l iterations, the nodes representation vector will have
captured the structural information within a neighborhood
of radius l [32]. We can define the node representation vector
at the l-th layer as

hl
v = AGGREGATEl{hl−1

u : u ∈ N(v) ∪ {v}} (1)

where N(v) is the set of neighbors for some node v.
With the final learned representation vectors, we can

perform graph classification via a graph representation
vector hG, which can be obtained by pooling every node

representation vector of the graph given some pooling func-
tion. In other words, hG = pool(H) where H is the node
representation vectors stacked such that row v of H is hv

and pool is some permutation-invariant function. Once hG

is obtained, the goal for graph classification is to pass hG

through some function f such that f(hG) = yG where yG is
the label of graph G. The architecture of a typical model that
uses GNN layers for graph classification is shown in Fig. 1.
We now proceed to define a GNN layer called Graph Convo-
lutional Networks (GCN) and a common GNN architecture
for graph classification called Deep Graph Convolutional
Neural Networks (DGCNN) that will be used throughout
the paper.

3.2.1 Graph Convolutional Networks (GCN)

One of the most popular GNN layers is the GCN layer [16],
which is defined by the following aggregation rule:

H l+1 = σ(D̂− 1
2 ÂD̂− 1

2H lW l).

We define Â = A + I as the adjacency matrix A of the
directed graph G with added self-connections represented
as the identity matrix I . D̂ is the diagonal matrix where
D̂ii =

∑
j Âij . W l is a layer-specific trainable weight matrix.

H l is defined as the matrix of activation’s in the lth layer
where H0 = X . Lastly, σ is the activation function.

To make a model for graph classification, the GCN layers
would need to be followed by some global pooling layer.
The pooling layer used in this paper for the GCN models
will be the global mean pooling layer defined as:

hG = Mean({hv,∀v ∈ V }).

For the purpose of this paper, the pooling layer of any GCN
model will be followed by a deep neural network (DNN) to
perform the final graph label prediction.

3.2.2 Deep Graph Convolutional Neural Network (DGCNN)

DGCNN is a GNN for graph classification [15]. The model
in DGCNN is made up of three successive parts: the graph
aggregation layers, the SortPooling layer, and a traditional
CNN. Using the same notation used to define the GCN
layer, we define the DGCNN layer as such:

H l+1 = σ(D̂−1ÂH lW l).

After all of the graph aggregation layers are finished, they
are concatenated such that H1:l = [H1, H2, ...,H l].

After the graph convolutional layers, DGCNN has the
SortPooling layer with the purpose of sorting the feature
descriptors and transforming the input to unify the graph
sizes. SortPooling starts by sorting H1:l in descending order
with respect to the value of the last column of H1:l. The
sorting step is followed by unifying the size of H1:l by
appending k − n zeros if n < k or trimming the last
n − k rows, where n is the initial amount of rows and k
is a user-defined integer. Lastly, once SortPooling has been
performed, H is fed through a traditional CNN to produce
the final graph prediction.

4

X1

X2

X3 X4

X5

[5,3,1]

[8,2,0]

[9,3,6] [4,6,2]

[5,9,7]

Layer 1

Layer 2

Layer 3

h 0
1

h 0
2

h 0
3

h 0
4

h 0
5 h 1

1

h 1
2

h 1
3

h 1
4

h 1
5 h 2

1

h 2
2

h 2
3

h 2
4

h 2
5

h3
1

h3
2

h3
3

h3
4

h3
5

Benign

Malicious

Input Graph Graph Aggregation Layers Global Pooling Layer Convolutional Neural Network

Fig. 1: An example of a typical GNN model used for malware detection (two-class classification), starting with an input
graph (e.g., ACFG) that is aggregated, pooled, and convoluted to produce a final graph label.

ADD EAX 6
...

MOV RBP RSP
...

PUSH RAX
...

SUB EAX 1
...

LEAVE
RET

(a) CFG

{0,5,...,0}

{1,0,...,2}

{4,3,...,1} {0,2,...,0}

{0,0,...,1}

(b) ACFG

Fig. 2: CFG and ACFG developed from a software binary.

3.3 Control Flow Graphs

We utilize two types of graphs, the Control Flow Graph
(CFG) and the Attributed Control Flow Graph (ACFG).

Control Flow Graph (CFG). An illustration of a CFG is
shown in Fig. 2a. A CFG is a directed graph G = (V,E)
that represents every possible path of execution that can
occur in a running program. Each vertex of the graph,
vi ∈ V = {v1, v2, · · · , vn}, represents a contiguous
block of code of maximal length, i.e., the first lines of
code is the only entry, and the last lines of code rep-
resent the possible exits. The set of edges E represents
the possible paths of execution of the program such that
(vi, vj) = ek ∈ E = {e1, e2, · · · , em} if ek is a jump or
branch from vi to vj .

Attributed Control Flow Graph (ACFG). An illustration
of an ACFG extracted from the CFG in Fig. 2a is shown
alongside it in Fig. 2b. An ACFG is a control flow graph
with an associated node-feature matrix X of size n×m
where the ith row of the matrix represents the features
of the ith vertex, vi. In this paper, the node features are
made up of the opcodes of the program as defined in
Section 5. Thus, we represent any ACFG as G = (A,X)
where A is the adjacency matrix of the control flow
graph and X is its corresponding node-feature matrix.

4 GENERATING ADVERSARIAL EXAMPLES

In this section, we formulate generating semantics-
preserving AEs and propose effective adversarial attacks
that work by injecting inexecutable artificial nodes.

4.1 Problem Formulation
We start by discussing the goals and constraints we must
abide by when generating a semantics-preserving AE. Our
first objective is to force the target model f to misclassify
some sample x with class y by adding perturbation to x.
Namely, our first goal is to force f(x′) = y′ where x′ is
the AE and y′ is some class other than y. Next, our goal
is to minimize the amount of perturbation added to x to
create x′. That is, |x − x′| ≤ ∆ where ∆ is the maximum
amount of perturbation we allow ourselves to add, and
|x − x′| denotes the difference between x and x′. Lastly,
we aim to add perturbation only in such a way that x and
x′ are semantically equivalent. We denote two semantically
equivalent samples as x ≡ x′. Thus, we can combine the
following three objectives to generate our final constraint
rule as such: for the original sample x with an associated
class label y, we wish to produce an adversarial example x′

for some target model f such that:

(f(x′) ̸= y) ∧ (|x− x′| ≤ ∆) ∧ (x ≡ x′). (2)

4.2 Threat Model

Background. Adversarial attacks are broadly grouped into
three categories based on the amount of knowledge the
adversary may have about the target model and associated
details: white-box, black-box, and grey-box attacks.
White-box. In a white-box attack, the adversary has com-

plete knowledge of the model’s information, such as
its parameters and dataset. An example of a white-box
attack is FGSM which uses the gradient of the target
model to produce AEs [24].

Black-box. The adversary does not know the target model’s
parameters for a black-box attack. The only information
they can derive is through queries of the target model.
One way of creating black-box attacks is to use a sub-
stitute model [26], where instead of taking the gradient
of the target model to generate AEs, the adversary uses

5

the gradient from a substitute model that was trained
using a synthetic dataset.

Grey-box. In a grey-box attack, adversaries have levels of
information between those provided by black-box and
white-box attacks. Like a black-box attack, the adver-
sary still cannot access the target model’s parameters.
However, the adversary may have other information
about the model and its development, e.g., model type,
training data, and the features the model uses to make
predictions.

Our Model. The adversarial attacks we propose are closest
to the grey-box threat model: that is, we assume that the
adversary has very limited access and knowledge of the
inner workings of the target model. For our constraints, we
assume that the adversary does not know the target model’s
parameters or its training data. The adversary only knows
the model’s features and that it uses GNN layers. In this
case, the target model is a DGCNN that predicts the labels
of software binaries given their corresponding ACFG where
the node-feature vectors represent the number of different
types of opcodes that each node contains. Our target model
is based on the MAGIC model developed by Yan et al. [10].
Although we only focus on the MAGIC model for this paper,
our approach can easily be extended to other ACFG GNN
malware detectors [33]. For our experiments, we used the
features in Table 1.

4.3 ACFG Perturbations with Gradient-Based Methods

According to the Goodfellow et al. [24], we can linearize the
cost function J for some model f around the current value
of the models parameters θ to obtain an optimal max-norm
constrained perturbation of

η = ε · sign(∇XJf (θ,X, y)) (3)

where X is the models input and y is the label associated
with X . For both accuracy and simplification, we set ε = 1.
To create an AE with respect to the gradient, we would add
η to the current input, i.e.,

X := X + η. (4)

If we wish to update the perturbation over multiple
iterations, we can set the initial AE to the original sample
such that Xi = X for iteration i = 0 and the update step for
i > 0 can be defined as

Xi := Xi−1 + η. (5)

Depending on how the adversary wishes to add the
perturbation to an ACFG, we will have to change the update
step to fit any possible limitations that may arise due to the
constraints in equation (2). We will look at two different
types of perturbation an adversary can apply: executable
perturbation and inexecutable perturbation.

If we are applying a perturbation to the part of the
ACFG that is executable, we cannot take away any of the
opcodes associated with the node-feature vector. Thus, in
this scenario, we would add perturbation with regard to the
following equation:

Xi := Xi−1 + σ(sign(∇Xi−1Jf (θ,X
i−1, A, y))). (6)

where σ is the ReLU function.
In contrast, if we’re adding perturbation to the part of the

ACFG that isn’t executable, there isn’t a worry about taking
away perturbation. However, there is no way to represent
a negative amount of assembly instructions, so we must,
therefore, make sure that we do not try to take away any
instructions that do not exist. Therefore, we would follow
the following update rule:

Xi := σ(Xi−1 + sign(∇Xi−1Jf (θ,X
i−1, A, y))) (7)

Next, we must solve the issue of actually obtaining the
gradient to update the AEs as is used in equations (6) and
(7). Since we do not have access to the model’s parameters
or training data from our grey-box constraints, we do not
have any way of getting the gradient directly from the target
model itself. Instead, we must develop a substitute model
f ′ that is used to simulate the target model f using the
techniques developed by Papernot et al. [26].

To create the substitute model, we assume the adversary
has basic knowledge of the target model’s architecture, i.e.,
they know it is some type of GNN that uses ACFGs for
malware detection. Therefore, f ′ will be made as some
arbitrary generic GNN that uses ACFGs to perform two-
class classification. We also assume that the adversary has
basic querying capabilities to generate a synthetic dataset
that will be used to train f ′. To generate a synthetic dataset,
an adversary must first collect a normal dataset comprised
of benign and malicious software binaries. The synthetic
dataset is then created by querying the target model to
generate the labels for each sample in the dataset. The labels
provided by the target model are used instead of the original
labels so that f ′ is a close approximation of f [26]. Once the
substitute model is trained with the synthetic dataset, the
adversary can use it to craft AEs by using the parameters of
f ′ instead of f .

4.4 Semantics-preserving Gradient Insertion (SGI)

Semantics-preserving Gradient Insertion (SGI) is a black-box
gradient-based AE generation method developed by Zhang
et al. [21] that works by injecting semantic nop instructions
directly into the original nodes of the ACFG. For our slightly
modified version, we will classify it as a grey-box attack as
we assume the adversary knows the additional information
described in the threat model.

To develop an AE using SGI, we use a substitute model
to inject nop instructions as is shown in Algorithm 1. For
each iteration for a maximum number of iterations, we use
the gradient to determine which additional nop instruction
to inject. Given that the perturbation is added to executable
portions of the software binary, the perturbation should be
updated with respect to equation (6) since we are unable to
take away any of the original software binary instructions.
However, we modified the equation for Algorithm 1 for
purposes of accuracy, with the additional constraint of only
allowing a maximum of one instruction to be added for each
node-feature vector per iteration. The iterations only stop if
the maximum amount of perturbation is reached, if there
are no more optimal instructions to add, or if the maximum
amount of iterations have been executed.

6

Algorithm 1 Algorithm of the SGI Attack
Input: G = (A,X), y, f ′, θ′, ni, ∆ /* ni: iterations */
Output: G′ = (A,X ′)

1: i← 1
2: X ′ ← X
3: while i ≤ ni do
4: gi ← ∇X′Jf ′(θ′, X ′, A, y)
5: /* Break if no optimal instructions to add */
6: if max(gi) ≤ 0 then
7: break
8: end if
9: Xi ← zeros(size(X))

10: Xi
argmax(gi)

← 1 /* Add optimal instruction */
11: X ′ ← X ′ +Xi

12: if |X −X ′| ≥ ∆ then /* Cap the perturbation */
13: break
14: end if
15: i← i+ 1
16: end while
17: G′ ← (A,X ′)

V1

V2

V3 V4

V5

V ′ [5,9,7]

Fig. 3: SNIA artificial node connections.

4.5 Attack I: Semantics-preserving Node Injection At-
tack (SNIA)

In contrast to applying perturbation into the original ex-
ecutable nodes of the ACFG, Semantics-preserving Node
Injection Attack (SNIA), only seeks to apply perturbation
to the inexecutable parts of the software binary while still
affecting how the classifier views the original portion of
the program, as is shown in Fig. 3. To do this, SNIA takes
advantage of how the aggregation step (1) of a GNN defines
the node representation vector of each node in one layer
based on its neighbor’s values of the previous layer. For
instance, if we wanted to change the value of some targeted
node representation vector hv without applying perturba-
tion directly, all we need to do is add an edge from some
node containing perturbation v′ to the target node v. Since
v′ ∈ N(v), the new node representation vector hl+1

v should
be different than hl

v .
Building upon this idea, to develop an AE given some

ACFG, we start by injecting a single artificial node so
the code represented by the artificial node may never be
executed, as is shown in Fig. 3. That is, there should be
no directed edge from any of the original nodes to the
artificial node. As seen in Algorithm 2, each element of
the artificial nodes feature vector is initially set to zero.
To determine which connections to make from the artificial
node to the original nodes, we choose the set of original

Algorithm 2 Algorithm of the SNIA Attack
Input: G = (A,X), y, f ′, θ′, ni, ∆, nf

/* ni: iterations, nf : features */
Output: G′ = (A′, X ′)

1: i← 1
2: X0 ← zeros(1, nf) /* Initial injected node feature */
3: X ′ ← X∥X0 /* ∥ is a concatenation operator */
4: A′ ← edgeGenerator(A) /* Create new edges */
5: while i ≤ ni do
6: Xi ← σ(Xi−1 + sign(∇Xi−1Jf ′(θ′, X ′, A′, y)))
7: X ′ ← X∥Xi /* Update perturbation */
8: if |X −X ′| ≥ ∆ then /* Cap the perturbation */
9: break

10: end if
11: i← i+ 1
12: end while
13: G′ ← (A′, X ′)

V1

V2

V3 V4

V5

V ′
1

V ′
2

V ′
3

V ′
4

V ′
5

[7,4,6]

[4,2,3]

[5,9,4]

[2,9,8]

[3,5,1]

Fig. 4: SMNIA artificial node connections.

nodes that have the highest centrality value, e.g., degree,
eigenvector, closeness, or betweenness centrality. The idea
behind using centrality to make connections is that the
nodes with the highest centrality value will be able to prop-
agate the perturbation more effectively to other nodes with
each aggregation step. Once the initial vector is set and the
new edges are added, we iteratively update the node-feature
vector of the artificial node by using a substitute model f ′.
For each iteration, we use the signed gradient of the cost
function J for the substitute model f ′ to determine which
instructions to inject. Since the perturbation being added
is in an inexecutable part of the ACFG, the perturbation
should be updated with respect to equation (7). We continue
to update the AE iteratively until the maximum number of
iterations has been executed or the perturbation limit has
been reached.

4.6 Attack II: Semantics-preserving Multiple Node In-
jection Attack (SMNIA)
Similar to SNIA, the Semantics-preserving Multiple Node
Injection Attack (SMNIA) only applies perturbation to arti-
ficial inexecutable nodes of an ACFG. The only difference
is that SMNIA has multiple artificial nodes where each
artificial node only connects to a single original node, as
shown in Fig. 4. Again, each element of every artificial node-
feature vector is set to zero, connections to the original nodes
are determined by centrality values, and the artificial nodes
are iteratively updated by using the signed gradient as is
shown in Algorithm 3.

7

Algorithm 3 Algorithm of the SMNIA Attack
Input: G = (A,X), y, f ′, θ′, ni, ∆, ne, nf

/* ni: iterations, nf : features, ne: edges */
Output: G′ = (A′, X ′)

1: i← 1
2: X0 ← zeros(ne, nf) /* New node for each new edge */
3: X ′ ← X ∥ X0

4: A′ ← edgeGenerator(A) /* Create new edges */
5: while i ≤ ni do
6: Xi ← σ(Xi−1 + sign(∇Xi−1Jf ′(θ′, X ′, A′, y)))
7: X ′ ← X ∥ Xi /* Update perturbation */
8: if |X −X ′| ≥ ∆ then /* Cap the perturbation */
9: break

10: end if
11: i← i+ 1
12: end while
13: G′ ← (A′, X ′)

V1

V2

V3 V4

V5

V ′
1,3,5

V ′
2,4

[2,6,3]

[9,5,4]

Fig. 5: SNICA artificial node connections.

The main benefit of using a single artificial node per
connection is that each artificial node does not have to
overgeneralize the perturbation associated with it. For in-
stance, if an artificial node is connected to multiple nodes,
it must generalize what perturbation is best for all of them,
even if the optimal perturbation for one connected node is
different than another. Although the extra artificial nodes
can lead to additional accuracy in evasion, a drawback is an
increase in the amount of perturbation required to create an
AE per connection. Since each artificial edge must have its
own perturbation, much more perturbation will be added to
the sample as the number of edges increases. To obtain the
accuracy of SMNIA and the low perturbation of SNIA, we
designed the Semantics-preserving Node Injection Cluster-
ing Attack (SNICA).

4.7 Attack III: Semantics-preserving Node Injection
Clustering Attack (SNICA).

Although the SMNIA attack is sufficient for producing
effective AEs, much of the perturbation is superfluous and
can be reduced significantly. For instance, if the node-feature
vector of two artificial nodes v′1 and v′2 are equal or very
similar to one another, there is no need to add perturbation
to both of the nodes. Instead, we could remove node v′2
and its associated perturbation and have v′1 connect to the
original node v′2 previously connected to, i.e., (v′1, v2) ∈ E.
Therefore, to reduce the repetitious perturbation produced
by SMNIA, SNICA combines similar nodes through hierar-

Algorithm 4 Algorithm of the SNICA Attack
Input: G = (A,X), y, f ′, θ′, ni, mi, ∆, ne, nf , nc

/* ni,mi: iterations, ne: edges, nf : features, nc: clusters */
Output: G′ = (A′, X ′)

1: i← 1
2: X0 ← zeros(ne, nf) /* New node for each new edge */
3: X ′ ← X∥X0

4: A′ ← edgeGenerator(A) /* Create new edges */
5: while i ≤ ni do
6: Xi ← σ(Xi−1 + sign(∇Xi−1Jf ′(θ′, X ′, A′, y)))
7: X ′ ← X∥Xi /* Update temporary perturbation */
8: if |X −X ′| ≥ ∆ then /* Cap the perturbation */
9: break

10: end if
11: i← i+ 1
12: end while
13: A′ ← clusterNodes(A,Xi) /* Cluster similar nodes */

/* Develop new perturbation for clustered nodes */
14: X0 ← zeros(nc, nf)
15: X ′ ← X ∥ X0

16: i← 1
17: while i ≤ mi do
18: Xi ← σ(Xi−1 + sign(∇Xi−1Jf ′(θ′, X ′, A′, y)))
19: X ′ ← X ∥ Xi /* Update perturbation */
20: if |X −X ′| ≥ ∆ then /* Cap the perturbation */
21: break
22: end if
23: i← i+ 1
24: end while
25: G′ ← (A′, X ′)

chical agglomerative clustering on the set of artificial node-
feature vectors X ′ with respect to the Euclidean distance.

As shown in Algorithm 4, SNICA starts by performing
the SMNIA algorithm. After the artificial nodes are gen-
erated from SMNIA, the process of clustering the nodes
begins. To combine the nodes, we group each node into one
of n clusters using a hierarchical agglomerative clustering
algorithm, e.g., ward, average, complete, or single. All nodes
for each individual cluster are combined into a single node
that keeps all of the original connections, as is shown in
Fig. 5. The artificial node-feature vectors are then reset to
zero vectors and regenerated through iterative updates with
the signed gradient, as is done in both SNIA and SMNIA.

5 EXPERIMENTAL EVALUATION

In this section, we perform experiments to determine the
effectiveness of each of the semantics-preserving adversarial
attacks.

5.1 Experimental Setup
To generate AEs for SNIA, SMNIA, SNICA, and SGI, we
used a DGCNN for the target model and a simple GCN for
the substitute model. The DGCNN model starts with four
graph convolution layers, each with the ReLU activation
function and 256, 128, 64, and 1 output channels. The
outputs are concatenated and passed through a convolution
layer with 16 output channels, a max pool layer of size

8

TABLE 1: Node-feature vector attributes.

Feature Description

F1 # Numeric Constants
F2 # Transfer Instructions
F3 # Call Instructions
F4 # Arithmetic Instructions
F5 # Compare Instructions
F6 # Mov Instructions
F7 # Termination Instructions
F8 # Data Declaration Instructions

2, and another convolution layer with 32 output channels.
The output is then flattened and passed through two dense
layers each with 2048 output channels. It is finally passed
through a final dense layer with an output of 2 to obtain
the predicted label of benign or malicious. The GCN model
has two graph convolution layers with the ReLU activation
function and 64 output channels each. There is then a global
mean pooling layer followed by a dense layer of size 1024
with a ReLU activation function and a dense layer of size 2
to obtain the final output.

All of the models used in this work were developed and
trained using TensorFlow 2.11.0 on Windows 11 WSL2 using
an RTX 3060ti Graphics Processing Unit (GPU). We also
developed the models using a custom branch of Spektral—
a graph deep learning library for Python and TensorFlow
2 [34]. To help create the AEs, we used an AE generation
library called Clever Hans [35].

5.1.1 Dataset

To train the models, we used a dataset of 3000 malicious and
3000 benign x86 Linux software binaries. All of the software
binaries were collected and processed on an Ubuntu 20.04
virtual machine using scripts written in Python 3.8. The
malicious binaries are made up of no particular family
of malware and were collected from VirusShare.com [36]
during January 2022. All of the benign binaries were taken
from across GitHub repositories and are used for a variety
of different applications.

Data splits. The dataset is split into two training sets of
2400 samples to be used separately to train the target and
substitute model. The training set for the substitute model
was transformed so that each samples label corresponded
with the output of the target DGCNN model. For testing
and validation, the dataset is split into a validation and
testing set comprised of 600 samples each for the target and
substitute model to share.

Feature extraction. To extract the ACFG from each software
binary, we used a binary analysis framework for Python
called Angr. Every node in each ACFG is comprised of a size
8 node-feature vector that contains 8 attributes derived from
each node’s x86 assembly code sequence [10] as is shown in
Table 1. The classification results for the models over the
training, validation, and testing sets are shown in Table 2.

5.1.2 Evaluation Metrics

In this paper, we use the following evaluation metrics.
1) Training Accuracy (TrA): the percentage of all correctly
classified samples by a model over the training set. The

TABLE 2: Classification performance. All evaluation metrics
are defined in section 5.1.2, and are shown as percentages.

Model TrA (%) VA (%) TeA (%) FP (%) FN (%)

Substitute GCN 95.88 97.83 95.83 2.50 1.67
Target DGCNN 99.88 97.67 96.67 2.33 1.00

training set was used to train each of the models. 2) Val-
idation Accuracy (VA): the percentage of all correctly clas-
sified samples by a model over the validation set. The
validation set was used to tune the hyperparameters of
the models. 3) Test Accuracy (TeA): the percentage of all
correctly classified samples by a model over the testing set.
The testing set was only used once per model to evaluate
how well it performed on unseen data. 4) False Positive (FP):
the percentage of benign binaries that were classified as
malware by a model. 5) False negative (FN): the percentage
of malware binaries that were classified as benign by a
model. 6) Max Perturbation Cap (MPC): a constraint used for
limiting the amount of perturbation that can make up an AE
while it is being generated. It is defined as the maximum
ratio of perturbed instructions over the number of total
instructions of an AE. 7) Total Perturbation (ToP): the ratio of
perturbed instructions over the total number of instructions
of a generated AE. 8) Evasion Rate (EvR): the percentage of
all misclassified AEs by a model.

5.2 Baselines
For our baselines, we conducted tests on both SGI and
Graph Embedding and Augmentation (GEA) [19]. GEA
is a simple semantics-preserving node-injection adversarial
attack that does not require the use of gradients. Instead, it
works by combining the ACFGs from two different software
binaries. The attack embeds a target sample xtar into some
other sample xorg with the goal of preserving the function-
ality of xorg and having a model misclassify it. In our case,
xtar and xorg will be different classes, with one being a
benign sample and the other being a malware sample.

5.3 Results
To determine how effective applying perturbations via node
injection is, we conducted tests on GEA, SGI, SNIA, SMNIA,
and SNICA. For our baseline, we used GEA, which embeds
the ACFG from one sample into another, whereas SGI ap-
plies perturbations directly to the original executable nodes
of the ACFG. In contrast to the aforementioned attacks,
SNIA, SMNIA, and SNICA work by adding perturbations
through inexecutable artificial nodes with edges connected
to the original nodes of the ACFG. For the gradient-based
AE generation methods, we tested several different max
perturbation values to see how much of an influence they
had on the evasion rate. We also tested how well node
injection attacks work at evading a target model that has
undergone adversarial retraining, which is a simple and
effective way of mitigating AEs for GNN-based malware
classifiers [37].
Comparison with Baseline (GEA). Our tests for GEA con-
sisted of embedding a target sample ACFG into the ACFG
of a sample with a different class. We selected benign and

9

TABLE 3: SGI evasion performance: maximum perturbation
cap (MPC), evasion rate (EvR), and total perturbation (ToP).
The lower part of the table shows a comparison with the
baseline (GEA) for two perturbation

MPC (%) EvR (%) ToP (%)

1.00 64.17 0.95
2.00 71.50 1.45
3.00 78.33 1.92
4.00 78.67 2.36
5.00 79.50 2.78
Unlimited 77.17 7.80

GEA 27.44 2.95
GEA 60.37 63.21

malicious target samples based on their size. The small
target samples produced AEs with an evasion rate of 27.44%
and an average total perturbation of 2.95%. In comparison,
the AEs with larger target samples had an evasion rate of
60.37% but had an average total perturbation of 63.21%. The
low evasion rate of GEA is most likely due to there being
no edges from the target ACFG nodes to the original ACFG
nodes. Without edges from the target ACFG to the original
ACFG nodes, the perturbation will have no impact on the
original ACFG node feature vectors through the aggregation
steps of the model.

Performance of SGI. As shown in Table 3, SGI was able
to successfully attack the target model with an evasion rate
of 79.50% with a max perturbation cap of 5.00%. At lower
max perturbation caps such as 1.00%, SGI was only able
to generate AEs with a 64.17% evasion rate. Even with no
limit as to how much perturbation could be added to the
sample, SGI was only able to achieve an evasion rate of
77.17%. With the SGI results, there seems to be a limitation
on how effective adding executable perturbation can be. To
see if applying perturbation through artificial nodes is more
effective, we tested SNIA, SMNIA, and SNICA.

Performance of SNIA. To determine the best way of con-
necting the artificial node to the original nodes for SNIA,
we tested four measurements of node centrality: degree,
betweenness, closeness, and eigenvector centrality. Using
these measurements, we added n edges from the artificial
node to the n nodes of the sample that had the highest
centrality values. Table 4 shows the results of SNIA using
each centrality measurement with a max perturbation cap
of 5.00% and 5 connected edges. Our results show that
the best node centrality measurement for adding edges
from the artificial node to the original nodes was degree
centrality. It outperformed all other measurements in both
evasion performance and in the amount of perturbation
needed to create an effective AE. Because of this, we used
degree centrality to add edges from the artificial nodes to
the original ACFG nodes for SNIA, SMNIA, and SNICA.

Comparison and SMNIA. As illustrated in Figure 6, SNIA is
more effective in generating adversarial examples than SGI
as we increase the number of edges connecting the artificial
node with the original nodes. With a max perturbation cap
of only 1.00%, SNIA was able to generate AEs with an
evasion rate greater than 80% once the number of connected
edges was greater than 3. Moreover, as we increased the max

TABLE 4: SNIA’s performance for different centrality mea-
surements: evasion rate (EvR) and total perturbation (ToP).

Node Centrality EvR (%) ToP (%)

Degree Centrality 94.00 2.81
Betweenness Centrality 93.67 3.17
Closeness Centrality 92.67 4.35
Eigenvector Centrality 90.83 3.41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

60

80

100

Number of Edges

E
v
a
si
o
n

R
a
te

1% 2% 3% 4% 5%

Fig. 6: SNIA evasion rate with max perturbation caps (vary-
ing, up to 5%, as shown in the legend with the different
percentages) and a varying number of edges.

perturbation cap, the evasion rates continued to increase.
With a max perturbation cap of 5.00% and 10 edges, SNIA
was able to generate AEs with an evasion rate of 94.83%
and an average total perturbation of 2.49%. However, the
evasion rate starts to plateau with respect to an increas-
ing amount of added edges. We believe this is due to an
over-generalization of the artificial node perturbation being
added as the perturbation must be a good fit for each
connected original node. To see if this was the case, we
tested AE generation with SMNIA, where each artificial
node only connects to a single original ACFG node.

SMNIA was able to have a higher evasion rate than
SNIA as shown in Figure 7. However, this is only when the
amount of perturbation that can be added is unrestricted.
With no max perturbation cap and 8 edges, SMNIA was
able to generate AE’s with an evasion rate of 98.67% with
an average total perturbation of 20.08%. When the total
perturbation is restricted, SMNIA is unable to produce AEs
with a greater evasion rate. Since there is only a single edge
connection per artificial node, the perturbation that is added
is unable to propagate as effectively during the aggregation
steps in contrast to a technique that has multiple edge
connections per artificial node, such as SNIA. To try and
find a middle ground between the two adversarial attacks,
we tested SNICA, which has multiple artificial nodes and
multiple connections per node.

Performance of SNICA. For SNICA, we performed the tests
with a max perturbation cap of 5.00% and with different
amounts of injected artificial nodes. As shown in Figure 8,
SNICA is able to produce much more effective AEs than
SMNIA when restricted with a perturbation cap. With 2
artificial nodes and 10 edges, SNICA is able to produce
AEs with a 94.00% evasion rate and 3.53% average total
perturbation. Without a max perturbation cap, 2 nodes,
and 8 edges, SNICA produced AEs with a 97.50% evasion
rate and only 6.30% average total perturbation. In contrast
to SMNIA, this is only down from an evasion rate of

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Number of Edges

E
v
a
si
o
n

R
a
te

1% 2% 3% 4% 5% Unlimited

Fig. 7: SMNIA evasion rate with max perturbation caps
(varying, up to unlimited, as shown in the legend with the
different percentages) and a varying number of edges.

5 6 7 8 9 10 11 12 13 14 15
80
82
84
86
88
90
92
94

Number of Edges

E
v
a
si
o
n

R
a
te

2 nodes 3 nodes 4 nodes

Fig. 8: SNICA evasion rate with a max perturbation cap of
5.00% under a varying number of nodes and edges.

98.67%, whereas the perturbation decreased down from
20.08%. However, when we inject more than 2 artificial
nodes, the evasion rate starts to decrease once again due
to the restrictions on the amount of perturbation that can be
added. Also, SNICA requires additional time for generating
each AE, averaging 0.94 seconds per sample, in contrast to
0.76 seconds for SNIA and 0.40 seconds for SMNIA. These
times are observed for AEs with 5 edges and a maximum
perturbation cap of 5.00%.

Resistance to Adversarial Retraining. To determine the
robustness of node-injection attacks to AE defenses, we
performed tests with a target model that has undergone ad-
versarial retraining. The target model was trained with half
normal samples and half AE’s that were generated using
SNIA with a max perturbation cap of 3.00% and 5 edges.
As shown in Figure 9, adversarial retraining does have an
impact on the evasion rate when compared to a target model
that has not received adversarial retraining. However, the
evasion rate is still higher than both of the baselines while
still requiring only a small amount of perturbation. With a
max perturbation cap of 5.00% and 7 connected edges, SNIA
could still generate AEs at an 83.33% evasion rate while
requiring an average total perturbation of 1.41%.

Throughout these experiments, we observed that each
of the node injection adversarial attacks was able to outper-
form SGI and GEA. As shown in Table 5, each node injection
adversarial attack was able to achieve a higher evasion
rate than the baselines. Moreover, SNIA, in particular, was
able to achieve much higher evasion rates than SGI and
GEA while also being robust to adversarial retraining and
requiring less perturbation on average to create an effective
AE. Our experiments also showed that by injecting more
artificial nodes, we were able to achieve a higher evasion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

20

40

60

80

Number of Edges

E
v
a
si
o
n

R
a
te

1% 2% 3% 4% 5%

Fig. 9: SNIA evasion rate for a target model that has un-
dergone adversarial retraining, with max perturbation caps
(varying, up to 5%, as shown in the legend with the different
percentages) and a varying number of edges.

TABLE 5: Adversarial attack evasion rates with a max
perturbation cap of 5.00% for SGI and our approach, and
design-compliant (small, large) perturbation in GEA (for
comparison to a baseline).

Attack EvR (%) ToP (%)

GEA (small) 27.44 2.95
GEA (large) 60.37 63.21
SGI 79.50 2.78
SNIA (ours) 94.83 2.49
SMNIA (ours) 87.17 4.99
SNICA (ours) 94.00 3.53

rate. With 10 nodes and edges, SMNIA was able to obtain
the highest evasion rate at 98.67%. Furthermore, it was
shown with SNICA that the total perturbation of an AE
can be reduced by clustering injected nodes while still
obtaining high evasion rates. Therefore, we argue that our
experiments show that creating AEs through node injection
is more effective and flexible than applying perturbation
directly to the original ACFG nodes.

6 DISCUSSION AND FUTURE WORK

In this work, we looked at several different types of
semantics-preserving adversarial attacks. As a baseline, we
looked at a graph embedding attack called GEA, which
injected the ACFG of a target sample into another sam-
ple. Another type applied perturbations directly to the
original executable nodes of the ACFG by injecting nop
semantic instructions, which was demonstrated with SGI.
We presented several node injection attacks that applied
perturbations through inexecutable artificial nodes that had
edges connected to the original nodes of the ACFG, which
was demonstrated by SNIA, SMNIA, and SNICA. The node
injection attacks were all able to outperform SGI and GEA
in both evasion rate and the amount of perturbation needed
to craft an effective AE. Finally, we showed that node
injection attacks are still able to evade target models that
have undergone adversarial retraining.

Although SNIA was able to produce excellent results, the
evasion rate started to plateau with an increasing number
of added edges. We believe that this is due to an over-
generalization of the perturbation for the artificial node,
as it must contain optimal perturbation for every original
node it is connected to. To test if this was the case, we
performed tests on SMNIA, where each artificial node was

11

only connected to a single original node. When the amount
of perturbation that could be added was not limited, the
evasion rate was able to get much higher than SNIA. How-
ever, SMNIA failed to perform well under any significant
perturbation constraints. We believe this is due to the lack
of connections per artificial node, which prevented pertur-
bation from efficiently propagating to the original nodes
during the aggregation steps. With the SNICA tests, we
showed that we could combine artificial nodes with similar
node-feature vectors to reduce the amount of perturbation
needed to create an AE.

To connect the inexecutable artificial nodes to the orig-
inal nodes of the ACFG, we tested several different node
centrality measurements such as degree, betweenness, close-
ness, and eigenvector centrality. For future work, we would
like to explore ideas of applying more sophisticated node
connections similar to other techniques introduced by vari-
ous researchers [28]–[31]. By using more sophisticated edge
generation techniques, we believe that we could obtain
higher evasion rates and lower perturbation for all three
of the presented adversarial attacks.

Moreover, future work should include how to detect
and prevent node injection attacks such as SNIA, SMNIA,
and SNICA. One possible avenue of detection could be
a pruning stage during the extraction of the ACFG that
removes all nodes that do not have a path to execution. If
this is successfully done, all of the perturbations generated
by the adversary should be removed before the ACFG is
fed into a model for classification. However, such a pruning
step could potentially eliminate useful information that is
not perturbation depending on the accuracy of the ACFG
generation technique [38].

Finally, future research should look into how node in-
jection attacks similar to SNI, SMNIA, and SNICA can be
extended to other GNN-based malware detectors that use
graph data other than ACFGs. For instance, Gao et al. [39]
proposed GDroid, a GCN model that uses API graphs to
detect Android malware. Another work by Cai et al. [40] has
shown that function call graphs can detect malware with
GNNs.

7 CONCLUSION

This paper proposed several semantics-preserving grey-box
adversarial attacks for GNNs that use ACFGs for malware
classification. Our results showed that adversaries can craft
AEs that take advantage of the aggregation steps of GNNs
by propagating perturbations from injected inexecutable
nodes to the original executable nodes of an ACFG. In
contrast to SGI — a similar attack that applies perturbation
directly to the executable portion of an ACFG — SNIA,
SMNIA, and SNICA all produced AEs with higher evasion
rates and lower amounts of perturbation. Moreover, the
node injection attacks were able to greatly outperform our
baseline attack GEA. Each node injection method had a two-
step process of generating AEs. First, each of the artificial
nodes was connected to the original nodes through a degree
centrality ranking step. Next, the perturbation associated
with each artificial node was generated by iteratively apply-
ing the signed gradient. Overall, our results show a need for

more robust GNN-based malware detectors that use ACFGs
for classification.

REFERENCES

[1] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam:
Effective and efficient behavior-based android malware detection
and prevention,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 15, no. 1, pp. 83–97, 2016.

[2] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: high-fidelity,
behavior-based automated malware analysis and classification,”
Comput. Secur., vol. 52, pp. 251–266, 2015.

[3] Y. Xiao, Y. Jia, X. Cheng, S. Wang, J. Mao, and Z. Liang, “I know
your social network accounts: A novel attack architecture for
device-identity association,” IEEE Transactions on Dependable and
Secure Computing, vol. 20, no. 2, pp. 1017–1030, 2023.

[4] A. A. Elkhail, N. Lachtar, D. Ibdah, R. Aslam, H. Khan, A. Bacha,
and H. Malik, “Seamlessly safeguarding data against ransomware
attacks,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 1, pp. 1–16, 2023.

[5] C. Wang, Z. Qin, J. Zhang, and H. Yin, “A malware variants de-
tection methodology with an opcode based feature method and a
fast density based clustering algorithm,” in 2016 12th International
Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), pp. 481–487, 2016.

[6] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. Mclean, and C. Nicholas, “An investigation of byte n-gram
features for malware classification,” Journal of Computer Virology
and Hacking Techniques, vol. 14, 02 2018.

[7] Z. Markel and M. Bilzor, “Building a machine learning classifier
for malware detection,” in 2014 Second Workshop on Anti-malware
Testing Research (WATeR), pp. 1–4, 2014.

[8] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abus-
naina, A. Awad, D. Nyang, and A. Mohaisen, “Analyzing and
detecting emerging internet of things malware: A graph-based
approach,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8977–
8988, 2019.

[9] M. Hassen and P. K. Chan, “Scalable function call graph-based
malware classification,” in Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, pp. 239–
248, 2017.

[10] J. Yan, G. Yan, and D. Jin, “Classifying malware represented
as control flow graphs using deep graph convolutional neural
network,” in 2019 49th annual IEEE/IFIP international conference on
dependable systems and networks (DSN), pp. 52–63, IEEE, 2019.

[11] P. Xu, Y. Zhang, C. Eckert, and A. Zarras, “Hawkeye: cross-
platform malware detection with representation learning on
graphs,” in International Conference on Artificial Neural Networks,
pp. 127–138, Springer, 2021.

[12] S. Jiang, Y. Hong, C. Fu, Y. Qian, and L. Han, “Function-level
obfuscation detection method based on graph convolutional net-
works,” Journal of Information Security and Applications, vol. 61,
p. 102953, 2021.

[13] P. Feng, J. Ma, T. Li, X. Ma, N. Xi, and D. Lu, “Android malware
detection based on call graph via graph neural network,” in
2020 International Conference on Networking and Network Applications
(NaNA), pp. 368–374, 2020.

[14] C. Li, G. Shen, and W. Sun, “Cross-architecture intemet-of-things
malware detection based on graph neural network,” in 2021
International Joint Conference on Neural Networks (IJCNN), pp. 1–7,
2021.

[15] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification,” in Thirty-
second AAAI conference on artificial intelligence, 2018.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[17] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples on graph data: Deep insights into attack
and defense,” 2019.

[18] A. Abusnaina, M. Abuhamad, H. Alasmary, A. Anwar, R. Jang,
S. Salem, D. Nyang, and D. Mohaisen, “DL-FHMC: deep learning-
based fine-grained hierarchical learning approach for robust mal-
ware classification,” IEEE Trans. Dependable Secur. Comput., vol. 19,
no. 5, pp. 3432–3447, 2022.

12

[19] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar,
and A. Mohaisen, “Adversarial learning attacks on graph-based
iot malware detection systems,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 1296–
1305, 2019.

[20] A. Abusnaina, H. Alasmary, M. Abuhamad, S. Salem, D. Nyang,
and A. Mohaisen, “Subgraph-based adversarial examples against
graph-based iot malware detection systems,” in International Con-
ference on Computational Data and Social Networks, pp. 268–281,
Springer, 2019.

[21] L. Zhang, P. Liu, Y.-H. Choi, and P. Chen, “Semantic-preserving
reinforcement learning attack against graph neural networks for
malware detection,” IEEE Transactions on Dependable and Secure
Computing, 2022.

[22] R. Yumlembam, B. Issac, S. M. Jacob, and L. Yang, “Iot-based
android malware detection using graph neural network with
adversarial defense,” IEEE Internet of Things Journal, pp. 1–1, 2022.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–
144, 2020.

[24] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” in International Conference on Learning
Representations, 2015.

[25] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” in Artificial intelligence safety and security,
pp. 99–112, Chapman and Hall/CRC, 2018.

[26] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, (New York, NY, USA),
p. 506–519, Association for Computing Machinery, 2017.

[27] H. Li, Z. Cheng, B. Wu, L. Yuan, C. Gao, W. Yuan, and X. Luo,
“Black-box adversarial example attack towards fcg based android
malware detection under incomplete feature information,” arXiv
preprint arXiv:2303.08509, 2023.

[28] S. Tao, Q. Cao, H. Shen, J. Huang, Y. Wu, and X. Cheng, “Single
node injection attack against graph neural networks,” in Proceed-
ings of the 30th ACM International Conference on Information and
Knowledge Management, ACM, oct 2021.

[29] X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and
J. Tang, “TDGIA: Effective injection attacks on graph neural net-
works,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, ACM, aug 2021.

[30] J. Fang, H. Wen, J. Wu, Q. Xuan, Z. Zheng, and C. K. Tse, “Gani:
Global attacks on graph neural networks via imperceptible node
injections,” 2022.

[31] Y. Chen, H. Yang, Y. Zhang, K. Ma, T. Liu, B. Han, and J. Cheng,
“Understanding and improving graph injection attack by promot-
ing unnoticeability,” 2022.

[32] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?,” arXiv preprint arXiv:1810.00826, 2018.

[33] X. Ling, L. Wu, W. Deng, Z. Qu, J. Zhang, S. Zhang, T. Ma, B. Wang,
C. Wu, and S. Ji, “Malgraph: Hierarchical graph neural networks
for robust windows malware detection,” in IEEE INFOCOM 2022-
IEEE Conference on Computer Communications, pp. 1998–2007, IEEE,
2022.

[34] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow
and keras with spektral,” 2020.

[35] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman,
A. Kurakin, C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko,
V. Behzadan, K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li,
R. Sheatsley, A. Garg, J. Uesato, W. Gierke, Y. Dong, D. Berthelot,
P. Hendricks, J. Rauber, and R. Long, “Technical report on the
cleverhans v2.1.0 adversarial examples library,” arXiv preprint
arXiv:1610.00768, 2018.

[36] “https://virusshare.com/,” 2022.
[37] H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen, “Robust

android malware detection against adversarial example attacks,”
in Proceedings of the Web Conference 2021, pp. 3603–3612, 2021.

[38] K. Liu, H. B. K. Tan, and X. Chen, “Binary code analysis,” Com-
puter, vol. 46, no. 8, pp. 60–68, 2013.

[39] H. Gao, S. Cheng, and W. Zhang, “Gdroid: Android malware
detection and classification with graph convolutional network,”
Computers & Security, vol. 106, p. 102264, 2021.

[40] M. Cai, Y. Jiang, C. Gao, H. Li, and W. Yuan, “Learning features
from enhanced function call graphs for android malware detec-
tion,” Neurocomputing, vol. 423, pp. 301–307, 2021.

Dylan Zapzalka obtained his B.S. in Computer
Science and Mathematics from North Dakota
State University in 2022. He is currently an Asso-
ciate Software Engineer at Veritas Technologies.
Dylan Zapzalka will be attending the University
of Michigan as Ph.D. student studying Computer
Science starting in 2023. His interests span the
areas of machine learning, cybersecurity, and
causal inference.

Saeed Salem received his Ph.D. in computer
science from Rensselaer Polytechnic Institute,
New York. He is currently a full professor of
Computer Science and Engineering at Qatar
University. Before then, he was a Full Professor
at North Dakota State University. Dr. Salem’s
research is in the broad areas of graph mining
and machine learning with a focus on devel-
oping algorithms for learning from graphs with
applications in the domain of security, and bio-
logical networks. Dr. Salem’s group developed

enumeration algorithms for mining all frequent subgraphs, cross-graph
dense graphs, and approximate frequent subgraphs from heteroge-
neous graphs.

David Mohaisen obtained his Ph.D. in Com-
puter Science from the University of Minnesota
in 2012. He is currently a professor of com-
puter science at the University of Central Florida,
where he leads the Security and Analytics Lab
(SEAL), which he has been leading since 2017.
Previously, he was an Assistant Professor at
SUNY Buffalo (2015-2017) and a Senior Scien-
tist at Verisign Labs (2012-2015). His research
interests are in applied security and privacy, cov-
ering aspects of computer and networked sys-

tems, software systems, IoT and AR/VR, and machine learning. His
research has been published in top conferences and journals, with
multiple best paper awards. His work was also featured in the New
Scientist, MIT Technology Review, ACM Tech News, Science Daily, etc.
Among other services, he has been an Associate Editor of IEEE TMC,
TDSC, TCC, and TPDS. He is a senior member of ACM (2018) and
IEEE (2015), a Distinguished Speaker of the ACM, and a Distinguished
Visitor of the IEEE Computer Society.

	Introduction
	Related Work
	Background
	Graphs
	Graph Neural Networks
	Graph Convolutional Networks (GCN)
	Deep Graph Convolutional Neural Network (DGCNN)

	Control Flow Graphs

	Generating Adversarial Examples
	Problem Formulation
	Threat Model
	ACFG Perturbations with Gradient-Based Methods
	Semantics-preserving Gradient Insertion (SGI)
	Attack I: Semantics-preserving Node Injection Attack (SNIA)
	Attack II: Semantics-preserving Multiple Node Injection Attack (SMNIA)
	Attack III: Semantics-preserving Node Injection Clustering Attack (SNICA).

	Experimental Evaluation
	Experimental Setup
	Dataset
	Evaluation Metrics

	Baselines
	Results

	Discussion and Future Work
	Conclusion
	References
	Biographies
	Dylan Zapzalka
	Saeed Salem
	David Mohaisen

