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ABSTRACT
The rapid growth of the Internet of Things (IoT) devices is paral-
leled by them being on the front-line of malicious attacks. This
has led to an explosion in the number of IoT malware, with con-
tinued mutations, evolution, and sophistication. Malware samples
are detected using machine learning (ML) algorithms alongside
the traditional signature-based methods. Although ML-based de-
tectors improve the detection performance, they are susceptible
to malware evolution and sophistication, making them limited to
the patterns that they have been trained upon. This continuous
trend motivates large body of literature on malware analysis and
detection research, with many systems emerging constantly, out-
performing their predecessors. In this paper, we systematically
examine the state-of-the-art malware detection approaches, that
utilize various representation and learning techniques, under a
range of adversarial settings. Our analyses highlight the instabil-
ity of the proposed detectors in learning patterns that distinguish
the benign from the malicious software. The results exhibit that
software mutations with functionality-preserving operations, such
as stripping and padding, significantly deteriorate the accuracy of
such detectors. Additionally, our analysis of the industry-standard
malware detectors shows their instability to the malware mutations.
Through extensive experiments, we highlight the gap between the
capabilities of the adversary and that of the existing malware detec-
tors. The evaluations and analyses show that the optimal malware
detection system is nowhere near and calls for the community to
streamline their efforts towards testing the robustness of malware
detectors to different manipulation techniques.
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1 INTRODUCTION
The rising number of IoT devices in many application domains has
exposed those devices’ susceptibility to attacks and vulnerabilities.
This susceptibility is attributed to hardware security flaws, firmware
vulnerabilities [52], and the failure to comply with essential security
metrics [4]. Even worse, it has been shown recently that IoT devices
today are susceptible to software vulnerabilities that were disclosed
decades ago, making them an easy target to well-known attacks
vectors—malware; e.g. Brickerbot [46] and Mirai [15] botnets. The
rising number of IoT devices in many application domains has
exposed those devices’ susceptibility to attacks and vulnerabilities.
This susceptibility is attributed to hardware security flaws, firmware
vulnerabilities [52], and the failure to comply with essential security
metrics [4]. Even worse, it has been shown recently that IoT devices
today are susceptible to software vulnerabilities that were disclosed
decades ago, making them an easy target to well-known attacks
vectors—malware; e.g. Brickerbot [46] and Mirai [15] botnets.

IoT malware have been the focus of the security research commu-
nity and the industry alike. These efforts have resulted in various
malware detection approaches, intended for safeguarding the IoT
infrastructure against increasing targeted attacks. These proposed
detectors leverage the traditional signature-based approach or the
capabilities of the learning algorithms to build Artificial Intelligent
(AI)-based detectors. These detection systems leverage modalities
generated through static and dynamic software analysis techniques,
along with deep learning and natural language processing, for gen-
eralizing detection to previously unseen IoT malware [41]. Those
engines that feed into the likes of VirusTotal are fittingly considered
as the up-to-date capability of industry-standard malware detectors.

Considering that these techniques are heavily dependent on the
specific data used for their training and testing [38], it is plausible
that they would have a reduced performance when tested in an
uncontrolled environment due to various practical settings. For ex-
ample, the constant evolution of malware that employ obfuscation
may impact the performance of these detectors over time, especially
the static-based techniques. Moreover, packed software samples are
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known to be categorized as malicious by the industry-standard mal-
ware detectors [11]. While packing is widely used among malicious
software, it is not exclusive to malware. This, in turn, limits the
usage of packing as a detection modality since that may result in
significant false positives. Even in the absence of packing, malware
detection systems have been shown to be susceptible to adversarial
attacks. An adversary can manipulate the features of any software,
directly or indirectly, to force the detector to output the adversary’s
desired decision [10, 33, 44].

A common practice for inspecting software is using online scan
engines, such as VirusTotal [3], which embody the aforementioned
malware detection techniques and provide reports that contain
the detection results of a pool of anti-virus engines. Additionally,
these online scanners are utilized by the malware developers to
check if their malicious payloads can evade detection from the anti-
virus engines before starting a malware campaign [25]. Altogether,
before deploying such malware detection systems in practice, it
is essential to understand the shortcomings of state-of-the-art IoT
malware detection systems under adversarial settings that can be
abused by the adversaries towards future malware campaigns.

In this work, we examine state-of-the-art malware detection
approaches, including those that rely on different representation
and learning algorithms. We consider techniques that represent
the software as a binary sequence, static disassembly features, and
graphs. These representations yield a promising detection perfor-
mance, with higher than 99% detection accuracy [12, 20, 35, 37, 53].
However, our findings highlight the instability of the learning algo-
rithms in learning useful fundamental patterns that represent the
difference between benign and malicious software (more details
can be found in section 5).

By systematically evaluating the robustness of various malware
detectors, we demonstrate that manipulating the malicious soft-
ware with functionality-preserving operations, such as stripping
and binary padding, significantly reduces the detectors’ perfor-
mance. Towards this, we generate four equivalent binaries for each
software usingmeans of packing (with different compression levels),
stripping, and padding. We evaluate each of the resultant software
against various IoT malware detection approaches, along with the
industry-standard malware detection engines. The results show
a concerning behavior, where one or more detectors fail to hold
a reasonable performance (lower than 50% detection rate) in de-
tecting malware mutations. Figure 1 shows the different phases of
analysis strategy; feature representation, software manipulation,
and evaluation of ML-based malware detectors.
Contributions. This work highlights the discrepancies between
the capabilities of the adversary and the assumed adversarial ca-
pabilities by the research community. Particularly, we make the
following contributions:

(1) Validity of the baseline: We examine nine state-of-the-art mal-
ware detection representations and three learning algorithms
and evaluate their performance using a total of 5,295 IoT soft-
ware binaries. The evaluation shows the effectiveness of each
representation in detecting malicious IoT software with high
accuracy in a level playing field.

(2) Model instability: We investigate the stability of the baseline
malware detectors. Our results demonstrate the inconsistency
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Figure 1: The system pipeline. The software binaries are (a)
represented using different state-of-the-art approaches, and
(b) manipulated using functionality preserving operations,
such as packing, stripping, and padding. The corresponding
representations of the original samples and manipulated
ones are then (c) tested against pre-trained ML-based mal-
ware detectors and industry-standard detection engines.

of the learning process, i.e., with the introduction of a small
random perturbation to the input space, the detector is rendered
useless (outputs random label).

(3) Vulnerability to adversarial settings:We examine the robustness
of the IoT malware detectors under white-box and black-box
adversarial settings, resulting in an accuracy reduction of up to
70%.

(4) Vulnerability to binary manipulation:We evaluate detectors against
three manipulation techniques: packing, stripping, and padding.
These techniques are practicality and functionality preserving,
where the generated software is identical in functionality to the
original software. Our evaluation shows that such software can
mislead the state-of-the-art malware detectors.

(5) Vulnerability of industry-standard malware detectors: The eval-
uation of industry-standard malware detection engines shows
that most of the engines are rendered useless upon slight modi-
fication of the software.

Organization. The rest of this paper is organized as follows. We
provide a background onmalware detection and evasion techniques
in section 2. We discuss the threat model under which we evaluate
the robustness of malware detectors in section 3. Overview of the
used dataset is provided in section 4. Then, we evaluate the state-
of-the-art malware detectors in section 5 and the industry-standard
detection engines in section 6. We conclude our work in section 7,
providing the main takeaways of this study.

2 BACKGROUND
The increasing security concern for IoT devices has been paralleled
by an increasing body of work around IoT security, particularly
addressing malware analysis and detection. Building towards our
work, it is important to outline the efforts that propose IoT malware
detection systems and the methods of evasion that will elucidate the
susceptibility of the malware detection systems to various adver-
saries. In this section, we revisit some of those efforts that propose
IoT malware detection systems.
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2.1 Malware Detection
Prior works have shown the potential and feasibility of ML to detect
malware with more than 99% accuracy [13, 16, 36, 37, 48, 50, 55].
The performance of these detection systems depends on the choice
of software representations, which are a result of two common
analysis techniques. In dynamic analysis, a malware is executed
in a monitored sandbox environment. The behavioral patterns are
then used as feature representation. However, dynamic analysis is
time and space-consuming, thereby limiting its scalability [51].

The static analysis involves analyzing the binary executable with-
out executing it. The fast and scalable extraction of representations
makes static analysis the primary analysis technique for malware
detection. Malware binaries have multiple features that can be stat-
ically extracted and used as modalities for malware representation.
Selected Representations. We focus on representations that are
(1) extensively used in the prior works, (2) fast to generate, and (3)
can be extracted for malware detection on the fly. We summarize
the used representations in the following.

(1) A common strategy is to transform the malware into a
grayscale image. Particularly, the byte-code is visualized as a
grayscale image of a fixed size of (ℎ ×𝑤 ) where every Byte
is a pixel in the image.

(2) CFG adjacency. Another strategy is to extract the assembly
instructions by disassembling malware and further trans-
forming them into a Control Flow Graph (CFG) by dissecting
them into basic blocks depending on the instruction branch-
ing or jumps. The CFG is then represented as a square matrix
representing edges between nodes.

(3) CFG algorithm. Graph algorithms have been augmented to
extract graph attributes that represent the connectivity pat-
terns in the CFG. These features are exhibited in Table 1.

(4) Strings are a sequence of printable characters in the binary
codebase. The strings of a program are analyzed to under-
stand the possible behavioral patterns of the malware and
can also be used to prepare a sandbox environment for the
dynamic analysis [21].

(5) Segments are necessary for program execution. They describe
the memory layout of an executable and is interpreted by
the kernel during load [40]. Within every segment, there
may be code or data divided among sections, such as .text.
Binaries contain symbol tables which are used as references
for linking and debugging [40].

(6) Symbols are symbolic references to code or data and include
global variables or functions. Every executable generally
has two symbol tables: the symbol table that contains all
symbol references and the dynamic symbol table which only
contains references for dynamic symbols [40].

(7) Hexdump represents a malware as a sequence of hexadeci-
mal values, where each value represents two bytes (in 0-255
range), the frequency of which is then recorded as a vector
of size 1 × 256.

(8) Feature fusion represents a unified (combined) representation
using all the previous representations.

Table 1: The CFG extracted algorithmic features, categorized
into seven groups. When possible, the minimum, maximum,
median, mean, and standard deviation are calculated.

Feature category # of features
Betweenness centrality 5
Closeness centrality 5
Degree centrality 5
Shortest path 5
Density 1
# of Edges 1
# of Nodes 1
Total 23

For the completeness of the study, we include malware repre-
sentations proposed by works that are not strictly IoT malware-
specific. Table 2 summarizes the malware representations that have
been proposed for malware detection, and utilized in this work.

2.2 Representation Evasion
Several software evasion and manipulation techniques were pro-
posed for malware mutation and misclassification. In the following,
we briefly discuss the commonly used techniques.
Binary Packing. Packing is used by malware authors to thwart de-
tection or analysis by detectors, analysts. The packer is augmented
to compress or encrypt an executable, where the code and data
are hidden from the analysts. Considering that portions of the ex-
ecutable are compressed, it needs to be decompressed before it is
executed in memory [40].

Typical packing software consist of two programs, packer pro-
gram and the stub program, where the first packs the software
while the second deobfuscates the software. While there are many
packing programs, such as DacryFile by Grugq, Burneye by Scut,
Shiva by Neil and Shawn, and Maya’s Veil by Ryan, the Ultimate
Packer for eXecutables (UPX) [7] is the one most used [21]. UPX
utilizes the UCL data compression library algorithm [6] which uses
in-place decompression and does not introduce memory overheads.
Binary Stripping. Stripping is utilized to hide information that
may leak the functional software strategies. A codebase can be
compiled with no standard library linking (gcc-nostlib). Alterna-
tively, parts of the ELF file can be hidden such that the different
constituents of the binary format can be obfuscated such that the
interpretation can be halted. The resultant binaries would be void
of information such as debug and relocation information, section
headers, and symbols [5].
Adversarial Evasion.With the growth in ML adoption, it is essen-
tial to understand and assess the robustness of ML techniques to
several adversarial settings. These settings include adversarial ex-
amples, in which an adversary crafts perturbation to misguide the
model output to its desired label by applying aminimal perturbation
to the original sample [43].

Given a model objective function 𝑓 (.) and a sample represented
by a vector 𝑥 , the adversary aims to introduce perturbation (𝛿)
in the feature space 𝑥 ′ = 𝑥 + 𝛿 such as 𝑓 (𝑥) ̸= 𝑓 (𝑥 ′). Crafting
the perturbation can be derived from two perspectives: targeted
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Table 2: The state-of-the-art static analysis representations
used in this work. Most of the representations require
reverse-engineering (R.E.), while image-based representa-
tion directly used the raw binaries (Bin.). CODE: features
extracted from the disassemble binaries.

Type Feature Work Bin. R.E. Graph
Binary Image [31, 37, 48, 54] ✓ ✗ ✗

CFG Adjacency [17, 30, 53] ✗ ✓ ✓
CFG Algorithmic [13, 16, 17] ✗ ✓ ✓
CODE String [12, 16] ✗ ✓ ✗

CODE Symbols [12, 16] ✗ ✓ ✗

CODE Sections [12, 16] ✗ ✓ ✗

CODE Segments [12] ✗ ✓ ✗

CODE Hexdumps [12] ✓ ✓ ✗

CODE Combined [12, 16] ✓ ✓ ✗

and non-targeted attacks. Targeted attacks. The adversary in
this attack generates an adversarial example 𝑥 ′ that forces the
classifier to misclassify into a specific target class 𝑡 . For instance,
the adversary generates a set of malicious IoT software samples,
which are classified as benign. That is: 𝑥 ′ : [𝑓 (𝑥 ′) = 𝑡].Untargeted
attacks. The adversary’s goal is to misclassify the output of the
model to any class other than the original label. That is 𝑥 ′ : [𝑓 (𝑥 ′) ̸=
𝑓 (𝑥)]. In this work, we only consider the two-class classification
task, where targeted and untargeted attacks behave the same.

Adversarial attacks can be launched under different adversarial
capabilities that allow for either black-box or white-box attacks.
In a white-box attack, the adversary has full knowledge of the
inner networking paradigm of the model. In a black-box attack, the
adversary has only access to the model via an oracle and can only
observe the model’s output.

Several methods have been proposed to generate adversarial
examples by directly perturbing the feature space in both black-box
and white-box settings [24, 29, 34, 39]. For example, Carlini and
Wagner [18] proposed generic adversarial attacks against distilled
Neural Networks (NN), which showed its effectiveness against
several “robust” deep learning NN.

While initially designed to exploit image-based classifiers, where
perturbation can be directly applied to the image pixels [42, 43, 49],
adversarial attacks showed high success in malware detection while
preserving the software functionality and executability [10, 26].
At the binary-level, several studies [32, 33] generated practical
adversarial examples by appending binaries to the original file.
While it is effective against signature- and binary-based classifiers,
it can be countered by reverse-engineering the software to extract
the corresponding representations.

Other studies [9, 10] introduced adversarial attacks on the exe-
cution flow of the code, by injecting benign functionalities within
the malware and vice versa. However, such a perturbation should
be applied to the source code, and is only possible by the malware
author, unlike the binary padding approach.

To investigate the effectiveness of different malware representa-
tion and learning approaches, we examine a wide set of adversarial
settings, including direct generic and modified adversarial attacks,

as well as the black-box adversarial settings. Our work investigates
the discrepancies between the capabilities of the adversaries and
malware detectors, with a focus on the IoT malware detection sys-
tems. Our findings, however, are applicable to various machine
learning-based malware detectors, irrespective of malware type.

3 THREAT MODEL
This work utilizes both white- and black-box attacks on various
machine learning malware detection models. For industrial detec-
tion engines (i.e., accessible through VirusTotal API), it is assumed
that the adversary does not have access to the malware detection
model, nor its configurations. A successful attack under black-box
adversarial settings result in a more practical adversarial example.
On the other hand, white-box attacks highlights the concerns that
should be taken into account when developing a new malware de-
tection engine. These concerns, however, can be exploited without
accessing the internal configurations of the implemented malware
detection model. This is mainly contributed to the transferability
characteristics of adversarial examples, from one model architec-
ture to another, and even one representation to another. This work
considers white-box adversarial settings to highlight the drawbacks
of machine learning design choices, while black-box settings are
utilized to examine the robustness of established malware detection
engines. In the following, we discuss the threat models used for
systematically evaluating the robustness of the malware detectors.

3.1 Gaussian Noise
A stable learning model is argued to be immune to misclassification
under the introduction of Gaussian noise in the feature space, as
unguided perturbation is unlikely to disrupt the existing patterns
to some extent [27, 28, 47].

A correctly trained model that can distinguish benign and mali-
cious samples with high confidence, is constraint by three factors.
(1) Data representation: A robust software representation should
contain meaningful patterns that can distinguish the malicious from
the benign software, (2) Learning algorithm: The learning algorithm
should be able to capture such patterns even at a higher dimension-
ality without over-fitting or under-fitting, and (3) Training data:
The trained model should be generalizable to unseen new samples,
and samples that are not fundamentally different from the ones in
the training dataset. This requires the training data to be cohesive
and the samples of each class to be an accurate representation of
that class. While the first two factors are considered, the third is an
open challenge, and we consider it out-of-scope of this work.

In this work, we use the Gaussian noise as ametric tomeasure the
stability of the representations. Given the model objective function
𝑓 (.), data points (samples) 𝑥 ∈ 𝑋 with feature space of 𝑛 features,
the output of the model is defined as 𝑦 = 𝑓 (𝑥 ). The Gaussian noise
is then calculated as follows:

𝑥 ′𝑖 = 𝑥𝑖 +𝑚𝑎𝑥 (𝑋𝑖 ) × 𝛿, ∀𝑖 ∈ 𝑛,

where 𝑋𝑖 is a list of the 𝑖𝑡ℎ features of all 𝑥 ∈ 𝑋 . A stable model is
then defined as:

𝑓 (𝑥 ) = 𝑓 (𝑥 ′), if 𝛿 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.
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a b c

Figure 2: Graph manipulation. The software is reverse-
engineered and (a) represented as CFG and adjacency matrix,
(b) using the pre-trained neural network, (c) white-box C&W-
based perturbation is crafted/applied to the CFG. We limit
the allowed actions to adding edge and adding new node to
generate a realistic CFG.

In this work, we refrain from using a cut-off threshold for a stable
model. However, we observe the model’s behavior when a pertur-
bation in the range of [1%, 100%] is introduced. Ideally, with the
continuous increase of the perturbation, the model’s accuracy de-
teriorates over the perturbation space, e.g. reaching random guess
should would ideally require applying a high perturbation, and not
<5% perturbation as shown later. We note that, however, this attack
will not generate practical adversarial examples, since it applies the
perturbation to the feature space directly. As such, attack scenario
is used to measure the detectors’ stability.

3.2 Graph Manipulation
This configuration targets the graph-based representations, includ-
ing the adjacency- and algorithmic-based representations extracted
from the software’s corresponding CFGs. Given a CFG 𝐺 = {𝑉 , 𝐸},
where 𝑉 is the set of nodes in the graph, and 𝐸 is the set of edges,
the adversary’s goal is to introduce a carefully crafted perturbation
that misclassifies the system to the desired output. To introduce
such a perturbation, we used the adjacency matrix representation
as a baseline to craft the perturbation. Then, the Carlini & Wagner
𝐿∞ (C&W) attack [19] is used to craft the perturbation under the
white-box settings. The C&W is a gradient-based attack that opti-
mizes the penalty and distance metrics on 𝐿∞ norms in the process
of generating adversarial examples. This method ensures that the
added perturbation will be minimal while causing misclassification.

Using the adjacency matrix representation, the adversary aims
to craft a perturbation 𝛿 ∈ R𝑑×𝑑 as a domain-specific range of
possible features that can be observed in ordinary samples. This
perturbation achieves the adversarial goal if 𝑦 = 𝑓 (𝑥) ̸= 𝑓 (𝑥 + 𝛿),
where𝑦′ is the classifier’s prediction after applying the perturbation
𝛿 to the original feature space 𝑥 . Figure 2 shows the outline of the
attack. To keep the generated CFG realistic, we limit the actions
done by C&W attack to only adding nodes and edges. This is done
by modifying the original attack to prevent deleting existing edges,
and only limiting the process to adding edges.

While CFG manipulation preserves the original functionality [9,
10], we do not have access to the source code of the samples. There-
fore, we cannot generate practical adversarial binaries using CFG
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Figure 3: Binary padding attack overview. (a) The software is
represented as an ℎ×𝑤 image. (b) The content of the image is
then compressed into the size of ℎ

2 ×𝑤 . (c) Using C&W attack,
we generate perturbation on the remaining half ℎ

2 ×𝑤 of the
image. (d) The generated image perturbation is then rescaled
to the original size of the software, and then (e) reshaped to
a 1-D vector represented the binaries to be appended.

manipulation. Given that, we used this attack to evade the graph-
based detectors using direct white-box attacks on NN-based ad-
jacency matrix-based classifier, while transferring the attack to
remaining CFG-based classifiers.

3.3 Static String Manipulation
Another white-box attack is the string manipulation attack. In this
representation, the software is represented as a vector 𝑉 of bag
of words𝑊 of size 1 × |𝑊 |, where |𝑊 | is the number of words
considered in the representation. Similar to the graph manipulation
attack, we used C&W 𝐿∞ attack to craft a minimal perturbation to
misclassify the model. Given that the crafted perturbation cannot be
applied directly to the binaries, we consider it as a practical attack
under the assumption of the availability of the source code. We eval-
uate this attack by crafting the perturbation using the NN baseline
and transferring the attack to the remaining baseline models.

3.4 Binary Packing
We recall that a binary executable can be packed using a packer
software, such as UPX (see subsection 2.2 for more details). The ML-
based detectors utilize the features, such as the raw binaries, strings,
and segments, from the malware file. These features are, however,
suppressed from packing. In this attack, we pack the malware and
probe the performance of the representation used in the litera-
ture. Moreover, UPX supports different degrees of packing. For this
study, we utilized the default settings and the optimized compres-
sion methods of UPX. The default level (7) enforces compression
ratio over speed using LZMA 7-Zip compression optimization. On
the other hand, the optimized packing uses M_LZMA algorithm,
prioritizing generating a smaller executable with a time consump-
tion trade-off. The latter approach is strongly recommended before
software release to avoid code inference.

3.5 Binary Stripping
Recall that a binary can be stripped of information without affecting
its executability (see subsection 2.2). In this attack, we probe the
impact of a stripped binary on an ML-based detector’s performance.
Particularly, we strip the binaries of their debug information and
the symbol information that are not needed for relocation.
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3.6 Binary Padding
In this attack, the adversary aims to craft a white-box practical
(executable) adversarial example by appending binaries to the end
of the software binaries. Figure 3 shows the process of generating
perturbation in the white-box settings for image-based representa-
tion baselines. For a software 𝑠 of size 𝑧𝑠 represented as an image
𝑖𝑚𝑔 of size ℎ ×𝑤 , we first compress the content of the image into
the space ℎ

2 ×𝑤 . Afterward, we craft a minimal perturbation using
C&W attack. To prevent the attack from applying a perturbation to
the upper half of the image, the attack is modified allowing changes
in the lower half of the image. After the evasion, we convert the
generated lower half of the image of size ℎ

2 ×𝑤 back to the actual
size 𝑧𝑠 of the software 𝑠 , and then converting it to 1-D vector by
concatenating the rows. We note that this attack will introduce a
perturbation size of 100%, as the perturbation has the same size as
that of the original file, and the generated software 𝑠 ′ will be of
size 𝑧𝑠′ = 2 × 𝑧𝑠 . This attack generates an adversarial software that
is executable. We evaluate the generated software on the image-
based baseline models, in addition to the other representations by
re-extracting the features from the manipulated software.

4 DATASET OVERVIEW
To analyze the robustness of state-of-the-art malware detectors, we
start by collecting a dataset of malicious and benign IoT binaries.
These IoT malware binaries cover ELF binaries that cover multiple
architectures, as has been followed by the prior work [14, 22]. The
dataset was collected between November 2018 and December 2020,
where 3,000 malware samples of three families—Gafgyt, Mirai, and
Tsunami—were retrieved from CyberIOCs [1], VirusTotal [3], and
VirusShare [8], in addition to 2,295 benign samples, compiled from
source files on GitHub [23] with different optimization levels.
Ground Truth Class.We used VirusTotal [3] to validate the ma-
licious and benign samples in our dataset. The samples were first
uploaded to VirusTotal. After 24 hours, the scan results correspond-
ing to each sample were retrieved.
Data Augmentation. As aforementioned in section 2, the dataset
samples are transformed to different representations: (1) Repre-
sented as images to be fed into an image-based classifier. (2) Using
Radare2 [2], a reverse-engineering open-source framework for an-
alyzing binaries, the samples were reverse-engineered to obtain
various features, such as strings, symbols, sections, and segments.
(3) Hexdump representation is used to represent the “.text” section
of the binaries. (4) The software CFG is extracted using Radare2,
which then used to generate the software adjacency matrix and
different graph-theoretic features.

5 ROBUSTNESS ANALYSIS
In the arm race between malware detectors and malware authors,
malware detection and identification require an accurate under-
standing of the capabilities of malware authors. In this section, we
evaluate the existing on-the-fly static-basedmalware detection tech-
niques (see subsection 2.1) against executability- and functionality-
preserving software binary manipulations.

5.1 Experimental Setup
Towards evaluating the robustness of the state-of-the-art IoT mal-
ware detectors, the dataset is transformed using the nine represen-
tations. Then, four learning algorithms are used to establish the
baseline classifiers.
Learning Algorithms. Several classification algorithms have been
adopted and used in various domains in IoT malware detection and
classification [13, 45]. In this study, we evaluate the robustness of
four ML algorithms, namely, Logistic Regression (LR), Random Forest
(RF), Convolutional Neural Networks (CNN), and Deep Neural Net-
works (DNN). The selection of learning algorithms is for multiple
reasons. They are (1) commonly used in this domain, (2) funda-
mentally different in the learning process, (3) highly sophisticated
approaches, such as DNN and CNN, and simpler ML algorithms,
such as LR and RF. For instance, the LR-based classifier is selected
to extract the relationships between variables in the feature space,
with no deep representations. CNN, on the other hand, was selected
to extract deep patterns in higher dimensionality. The nature of
the selected models will help in investigating the robustness and
stability of the feature representations and the learning algorithms
more accurately and on a larger scale.

The CNN-based architecture performswell in extracting patterns
in higher dimensionality when the pattern location is irrelevant.
Therefore, we use the CNNmodel with image-, CFG adjacency-, and
CFG algorithmic-based feature representations. On the other hand,
the DNN-based architecture is used with the static-based vector
representations, including Strings-, Symbols-, and Hexdump-based
feature representations. In the following, a brief description of each
learning algorithm is provided.
Logistic Regression (LR). LR models a binary dependent variable,
known as binary classification (“0” or “1”), using a logistic function.
Given (𝑋,𝑌 ) as an input training set, LR trains to classify segments
as positive (“1”) and negative (“0”) by estimating and optimizing the
boundary between the two classes (“0”, and “1”) and minimizing
the following function:

Loss(𝑓 (𝑋 ), 𝑌 ) =
{
− log(𝑓 (𝑋 )), 𝑌 = 1
− log(1 − 𝑓 (𝑋 )), 𝑌 ̸= 1

,

where 𝑓 (𝑋 ) is the LR’s prediction and 𝑌 is the ground truth labels.
Random Forest (RF). RF allows for variance reduction in the
output of the individual trees and mitigates the effect of noise on
the training process. RF consists of 𝑁 decision trees and is used
with non-linear classification tasks. Each tree is trained on random
features to allow for variance reduction in the individual trees’
output and decreases the effect of noise on the training process.
The final prediction is calculated by a majority prediction vote of
the decision trees or by the average prediction of all the trees.
Convolutional Neural Network (CNN). CNN is a powerful deep
learning model used in image classification and pattern recogni-
tion. A convolution layer, which generates feature maps, is the
basic unit of the CNN network. Once a feature vector is fed into a
convolutional layer, it becomes abstracted to a feature map, with
the shape of (feature map height) × (feature map width) × (feature
map depth). CNN performs well in extracting patterns in higher
dimensionality when the pattern location, in the feature space, is
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Table 3: Accuracy (%) of the baseline models. Each represen-
tation is evaluated using LR, RF, and NN-based classifiers.
Note that almost all representations hold high performance
(up to 99%) in detecting IoT malware.

Type Feature LR RF NN
Binary Image 99.90 99.81 100
CFG Adjacency 91.67 89.90 92.25
CFG Algorithmic 90.20 99.22 92.09
CODE String 98.48 99.43 98.48
CODE Symbols 98.77 99.43 97.82
CODE Sections 100 100 58.16
CODE Segments 98.39 100 58.16
CODE Hexdumps 98.96 99.24 98.48
CODE Combined 100 99.90 57.79

irrelevant. Therefore, we use the CNN model with image-, CFG
adjacency-, and CFG algorithmic-based feature representations.
DeepNeural Networks (DNN).DNNmodel is used to extract deep
encoded patterns and contains multiple consecutive fully connected
layers. In the learning stage, the model configures the parameters
of each single layer 𝑙 , denoted by:

ℎ(𝑙 ) = 𝑎(𝑊 (𝑙 ) × 𝑋 + 𝑏(𝑙 )), (1)
where, for a layer 𝑙 , 𝑎(.) is the activation function,𝑊 (𝑙 ) is the weights
of the features, and 𝑏(𝑙 ) is the bias. We use the DNN model with
the static-based representations, including Strings-, Symbols-, and
Hexdumps-based representations.
Training Stage. The dataset is split into 80% training and 20%
testing. The Neural Network (NN) classifiers were trained with ten
epochs, and a learning rate of 0.01.

5.2 Evaluation & Results
To better understand the robustness of the IoT malware detection
systems, we evaluate each of the settings separately.

5.2.1 Baseline Evaluation. We implemented the baseline classifiers
on our dataset (see section 4). Table 3 shows the performance of
the classifiers. Eight out of the nine representations achieve a high
detection accuracy of 99% with at least one learning algorithm. The
only exception is the CFG-based adjacency matrix representation,
with an accuracy of 92.25%. We recall that high accuracy does not
reflect accurate learning, nor the quality of the learned patterns.
RQ1. Are the baseline models stable under Gaussian noise?
The model’s performance decreases with the increase of the pertur-
bation size, to eventually reach random. Stable model’s performance
deteriorate over the applied perturbation space. However, unstable
models performance will rapidly drop after a perturbation thresh-
old. This is mainly contributed to that such models over-fit on
exact match, and are more sensitive to adversarial settings. Figure 4
shows the evaluation of the baseline classifiers under the Gaussian
noise with 1%-100% applied perturbation rate. Except for the Hex-
dump representation, with the introduction of a perturbation size of
1% ≤ 𝛿 ≤ 5%, the classifiers fail to deliver beyond the random guess.
This highlights that the used representations are not stable and
may fail due to the temporal changes in the data over time. A likely

Table 4: Baseline classifiers evaluation under white-box set-
tings. Only realistic and practical adversarial attacks are con-
sidered. All attacks are done on the NN and transferred to
the LR- and RF-based classifiers.

Type Feature Attack Type Model Malware Detection (%)

Binary Image
Transferred LR 63.73
Transferred RF 72.71
Direct CNN 63.73

CFG Adjacency
Transferred LR 81.77
Transferred RF 79.60
Direct CNN 81.30

CFG Algorithmic
Transferred LR 59.95
Transferred RF 60.70
Transferred CNN 59.95

CODE String
Transferred LR 29.08
Transferred RF 30.02
Direct DNN 30.59

reason for this is the frequent appearance of different versions of
the same or identical malware, thereby forcing the model to over-fit
on the exact match instead of extracting feasible patterns.

Key Finding: Except for Hexdump-based representation, the base-
line classifiers demonstrate high instability in their performance
under small perturbation (1% Gaussian noise).

RQ2. Are the baseline classifiers prone to practical white-box
adversarial attacks? Evaluating the classifiers against white-box
settings is essential to understand their point-of-failure. In this
context, we evaluate the white-box attacks that can be implemented
directly on the binaries, or on the source code by the malware
author. Table 4 shows the evaluation of the baseline models under
white-box attacks, including binary padding and graph and string
manipulation. While the binary padding can be also be applied to
the remaining representations (as shown later), it is considered as
a white-box attack on the image-based representation only, and
therefore reported here. We note that all considered attacks are
implemented on the NN-based classifier and transferred to other
learning algorithms. The CFG-based algorithmic representationwas
evaluated using the perturbation generated on the adjacency-based
representation (i.e., transferred) due to their feature dependencies.

Key Finding: For several representations, practical white-box at-
tacks are possible, and can be transferred to related learning
algorithms and representations.

5.2.2 Binary Manipulation Attacks. These settings include evaluat-
ing the classifiers under manipulation attacks on the software. Here,
we consider binary packing under default and optimized (packing*)
conditions, stripping, and padding. Table 5 shows the evaluation re-
sults under these manipulation attacks strategies. In the following,
we interpret these results posed as research questions.
RQ3. How does packing affect the performance of the base-
line classifiers? The evaluation results show that most of the
classifiers identify packed software as malicious. This indicates
that they identify packing as a malicious pattern. This observa-
tion is in line with Aghakhani et al. [11], demonstrating that the
industry-standard windows malware detection systems identify the
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(a) Image representation.
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(b) Adjacency matrix representation.
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(c) Graph algorithmic features.
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(d) String representation.
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(e) Symbols table representation.
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(f) Sections table representation.
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(g) Segments table representation.
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(h) Hexdump-based representation.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-1

 S
co

re

Perturbation

LR

RF

NN

(i) Combined static representations.

Figure 4: Baseline classifiers evaluation under various Gaussian noise perturbation rates (1%-100%).

packed software as malicious. However, our results bring forward
an exception, where Hexdump-based LR classifier maintains its
performance under the two levels of packing.

Key Finding: Baseline classifiers, in general, identify packing as
malicious behavior.

RQ4. Does stripping impact the performance of baseline clas-
sifiers? Recall that stripping removes information, such as the
debug information, from the software binaries. However, the re-
sults exhibit that the performance of most of the representations,
such as the CFG, strings, and Hexdump, are intact.

Key Finding: Generally, existing approaches maintain high accu-
racy under binary stripping.

RQ5. Does padding impact the performance of the baseline
classifiers? Given that with binary padding we do not remove
any existing functional codebase, it does not affect the analyses
of the software. Therefore, it only affects the binary/image-based
representation.

Key Finding: Binary padding only reduces the performance of
binary/image-based classifiers and can be countered by reverse-
engineering the software samples.

RQ6. What is the suggested robust classifier for IoT mal-
ware detection task? To answer this question, we considered the

following metrics: (1) Baseline accuracy. A detector should have
a minimal detection error (i.e., false positive and negative rates).
(2) Performance consistency. The performance of the classifiers
should be robust to various binary manipulation techniques. (3)
Model stability. The robustness of the classifier should encompass
Gaussian noise, to some extent. Altogether, the classifier that per-
formed best is the Hexdump-based LR classifier, followed by the
CFG algorithmic-based RF classifier.

Key Finding: Hexdump-based LR classifier is the most robust
classifier, providing a stable 98.96% baseline accuracy.

6 INDUSTRY-STANDARD DETECTION
ENGINES ROBUSTNESS ANALYSIS

Malware authors check their samples against the industry-standard
online detection engines to ensure evading those engines. Given
that these engines provide results for a pool of anti-virus scanners,
evading them is considered a prototype for malware evolution.
These mutations are then used in malware campaigns in the future.
We argue that a practical malware detector should also detect such
mutations, or at least cover for the low-effort based mutations.

6.1 Experimental Setup
Online scan engines, such as VirusTotal, are commonly used by
researchers to inspect software. VirusTotal reports contain the
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Table 5: Baseline evaluation under binary manipulation (%). Packed*: optimized packing, L.A.: learning algorithm.

Type Feature L.A. Benign Malware
Original Packed Packed* Stripped Padded Original Packed Packed* Stripped Padded

Binary Image
LR 100 3.92 4.35 6.31 63.73 99.83 98.00 98.00 98.00 98.33
RF 99.56 2.39 2.17 2.39 72.71 100 96.66 96.66 92.00 85.00
NN 100 6.31 6.31 2.17 63.73 100 100 100 100 100

CFG Adjacency
LR 87.36 33.11 33.55 87.36 87.36 95.50 77.33 77.50 95.50 95.50
RF 88.01 98.91 99.12 88.01 88.01 91.50 73.16 73.16 91.50 91.50
NN 86.92 1.74 1.74 86.92 86.92 96.33 79.16 79.16 96.33 96.33

CFG Algorithmic
LR 91.54 1.96 1.96 91.54 91.54 89.04 89.86 89.64 89.04 89.04
RF 99.51 99.56 99.78 99.51 99.51 98.96 88.76 88.76 98.96 98.96
NN 93.23 2.17 2.17 93.23 93.23 91.11 91.85 91.62 91.11 91.11

CODE String
LR 96.51 3.48 3.48 96.51 96.51 100 100 100 100 100
RF 98.69 2.39 2.39 98.69 98.69 100 100 100 100 100
NN 96.51 0.00 0.00 96.51 96.51 100 100 100 100 100

CODE Symbols
LR 97.16 1.08 1.08 97.16 97.16 100 100 100 100 100
RF 98.69 2.17 2.17 98.69 98.69 100 100 100 100 100
NN 94.98 3.26 3.26 94.98 94.98 100 100 100 100 100

CODE Sections
LR 100 100 100 3.48 100 100 34.66 34.66 100 100
RF 100 3.48 3.48 100 100 100 100 100 100 100
NN 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

CODE Segments
LR 96.51 0.00 0.00 96.51 96.51 99.83 99.83 99.83 99.83 99.83
RF 100 3.48 3.48 100 100 100 100 100 100 100
NN 3.48 3.48 3.48 3.48 3.48 100 100 100 100 100

CODE Hexdumps
LR 98.03 97.60 97.60 98.03 98.03 99.66 86.16 86.16 99.66 99.66
RF 98.25 1.74 1.74 98.25 98.25 100 92.83 92.83 100 100
NN 96.51 0.00 0.00 96.51 96.51 100 100 100 100 100

CODE Combined
LR 100 3.48 3.48 3.48 100 100 100 100 100 100
RF 99.78 3.26 3.26 99.56 99.78 100 100 100 100 100
NN 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

detection results of a pool of state-of-the-art anti-virus engines
that can be considered as the up-to-date capability of industry-
standard malware detectors. Overall, it contains reports from 66
IoT malware detection engines. Therefore, to have a comprehensive
evaluation of the existing IoT malware detectors, we also evaluate
the industry-standard malware detection systems.
VirusTotal Reporting. The original and manipulated software
were uploaded to VirusTotal using their Large File Scan API. To
account for the time the AI engines take to properly scan the up-
loaded files, we wait for 24-hours before gathering the reports. Each
of the reports contains details about the uploaded file, including the
date, size, header information, and the scan results of each available
detection engine. Each report contains results of multiple engines
(45-66), each highlighting if it detects the file as malicious or other-
wise. Additionally, we found two engines that report for less than
ten samples, which we removed from our list. Ultimately, we scan
the malicious and benign software through 64 detection engines.
AI-based Engines. The next step is to separate the AI-based en-
gines from other engines. This step is challenging as the detection
engines are unlikely to share their detection approaches with the
public. We manually inspect each detection engine website, search-
ing for the used approaches. Engines that explicitly mention AI or
ML are labeled as AI (✓), while others are labeled as uncertain (✗).

Ethical Considerations. As stated by VirusTotal, the API is not
meant to be used to compare between the engines, nor be used
to draw conclusions of whether engine X is better than engine Y.
Toward this, we take the following considerations: (1) All engines
are renamed as “E — 𝑖”, where 𝑖 is a given index for the engine. (2)
The usage of the API is to assert that state-of-the-art scan engines
are vulnerable and behave similar to the research-based detection
approaches discussed in section 5. We do not intend to compare the
engines, nor raise concerns against any specific service provider.

6.2 Evaluation & Results
We interpret the results of the industry-standard malware detectors
to understand their behavior, shown in Table 6 and presented as
research questions. The major insights are illustrated in Figure 6.
RQ7. What is the affect of manipulations on malware detec-
tion? To answer this question, we recorded the number of engines
that identify malware as malicious. We begin by probing the orig-
inal malware samples: Figure 5a shows the distribution of their
detection rate by the engines. Notice that malware, on average, is
detected by 40 engines, with most of them being detected by 35-45
engines. For the manipulated samples, however, the detection rate
varies highly. Figure 5 shows the distribution of malicious samples
by the number of engines for each of the manipulation strategies.
We notice that stripping (Figure 5d) does not affect the distribution
of the samples. However, packing (Figure 5b and Figure 5c) highly
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Table 6: The evaluation results (%) of the 64 online IoT malware detection engines. Packed*: optimized packing.

Engine AI Benign Malware
Original Packed Packed* Stripped Padded Original Packed Packed* Stripped Padded

E — 1 ✓ 100 86.41 89.68 100 100 100 82.79 82.94 100 100
E — 2 ✓ 100 100 100 100 100 98.33 33.83 34.67 97.33 23.5
E — 3 ✓ 100 100 100 100 100 99.5 34.67 35.5 98.5 37.0
E — 4 ✓ 100 100 100 100 100 99.33 94.5 96.33 99.33 95.29
E — 5 ✓ 100 — — 100 100 100 100 100 100 100
E — 6 ✓ 100 100 100 100 100 99.67 99.67 99.67 99.66 99.67
E — 7 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 8 ✓ 100 100 100 100 100 53.17 24.0 24.0 53.17 51.83
E — 9 ✓ 100 100 100 100 100 87.0 86.5 86.83 86.81 95.33
E — 10 ✓ 100 100 100 100 100 91.33 31.83 31.83 91.33 91.33
E — 11 ✓ 100 100 100 100 100 99.67 47.58 47.58 99.67 97.17
E — 12 ✓ 100 100 100 100 100 97.83 33.5 33.67 97.33 97.33
E — 13 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 14 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 15 ✓ 100 100 100 100 100 32.06 12.36 11.74 31.69 30.57
E — 16 ✓ 100 100 100 100 100 100 34.67 34.67 100 100
E — 17 ✓ 100 100 100 100 100 82.47 27.67 27.67 82.15 81.47
E — 18 ✓ 100 100 100 100 100 99.45 96.69 96.52 99.27 95.0
E — 19 ✓ 100 100 100 100 100 19.69 0.51 0.51 19.49 19.39
E — 20 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 21 ✓ 100 100 — 100 100 — 0.0 0.0 0.0 0.0
E — 22 ✗ 100 100 100 100 100 80.61 29.15 29.34 79.16 4.04
E — 23 ✗ 100 100 100 100 100 99.67 99.67 99.5 99.5 97.33
E — 24 ✗ 100 100 100 100 100 50.34 29.36 29.88 85.21 59.97
E — 25 ✗ 100 100 100 100 100 84.8 28.42 28.52 81.27 4.65
E — 26 ✗ 100 100 100 100 100 100 58.29 58.66 98.99 40.37
E — 27 ✗ 100 85.84 90.07 100 100 100 82.78 82.8 100 100
E — 28 ✗ 100 100 100 100 100 99.83 99.83 99.83 99.66 95.41
E — 29 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 30 ✗ 100 100 100 100 100 0.33 0.0 0.0 0.33 0.0
E — 31 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 32 ✗ 100 100 100 100 100 100 90.82 92.67 99.67 99.67
E — 33 ✗ 100 100 100 100 100 96.82 33.9 35.9 98.3 36.81
E — 34 ✗ 100 100 100 100 100 99.5 34.67 35.5 98.5 37.0
E — 35 ✗ 100 100 100 100 100 99.83 99.83 99.83 99.5 96.31
E — 36 ✗ 100 100 100 100 100 99.33 34.34 36.06 98.99 75.79
E — 37 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 38 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 39 ✗ 100 100 100 100 100 99.83 34.72 36.5 99.5 75.17
E — 40 ✗ 100 100 100 100 100 99.83 85.98 85.83 99.0 95.0
E — 41 ✗ 100 100 100 100 100 1.34 0.5 0.5 1.34 0.0
E — 42 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 43 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 44 ✗ 100 100 100 100 100 99.0 34.33 35.17 98.83 98.5
E — 45 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 46 ✗ 100 100 100 100 100 99.5 34.5 34.5 99.17 97.83
E — 47 ✗ 100 100 100 100 100 99.67 85.67 85.33 97.0 94.83
E — 48 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 49 ✗ 100 100 100 100 100 99.33 99.5 99.83 99.5 95.33
E — 50 ✗ 100 100 100 100 100 99.64 88.27 89.54 99.47 95.07
E — 51 ✗ 100 100 100 100 100 98.17 39.0 39.0 94.17 90.67
E — 52 ✗ 100 100 100 100 100 100 75.3 75.09 100 97.64
E — 53 ✗ 100 100 100 100 100 99.83 99.83 99.83 99.33 95.17
E — 54 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 55 ✗ 100 100 100 100 100 97.98 33.28 33.56 96.96 0.51
E — 56 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 57 ✗ 100 100 100 100 100 100 34.45 34.51 98.83 97.82
E — 58 ✗ 100 100 100 100 100 2.5 1.17 1.17 2.33 0.0
E — 59 ✗ 100 100 100 100 100 97.65 96.66 96.64 96.46 96.3
E — 60 ✗ 100 100 100 100 100 78.86 26.63 26.63 78.96 74.92
E — 61 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 62 ✗ 100 100 100 100 100 99.17 93.33 95.33 99.33 95.33
E — 63 ✗ 100 100 100 100 100 99.67 99.67 99.67 99.67 99.67
E — 64 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
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(b) Binary Packed.
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(e) Binary Padded.

Figure 5: The online engines’ detection rate of the original and binary manipulated IoT malware samples.

affects the detection rate. Moreover, while binary padding had min-
imal effects on the baseline classifiers’ performance (section 5), it
highly affects their detection among the online engines. This in-
dicates that several engines use binary-based representations (e.g.
binary sequence and image) to detect malicious software.

Key Finding: Except for binary stripping, binary manipulations
highly decreases the detection confidence.

RQ8. How do industrial engines perform under manipula-
tion? To answer this question, we evaluate each individual detec-
tion engine using the original and manipulated benign and mali-
cious software, shown in Table 6. We observe that multiple engines
perform poorly, with 36% of the engines (23 out of 64) failing in
identifying malware (< 15% malware detection rate), such as “E —
7” and “E — 29”. Additionally, except for “E — 1” and “E — 27”, the
benign detection accuracy is 100%, similar trends were observed for
packed, stripped, and padded benign software. We recall that both
packing and stripping results in removal of information. Notice
that, in general, industrial engines consider the lack of information
as benign behavior, resulting in reduced malware detection rate
under packing. This is more evident with packed benign samples,
as the reported accuracy remained unchanged (i.e., 100%).

Key Finding: Several engines (36%) exhibit reduced performance
for detecting original and binary manipulated malicious software.

RQ9. How do packed software affect the engines’ perfor-
mance? The evaluations exhibit that packing does not affect the
performance of the engines in accurately detecting benign software
(except for “E — 1” and “E — 27”). This observation contrasts with
previous observations [11] (refer to section 5). However, packing,

generally, reduces the accuracy of malware being detected as mal-
ware. For instance, “E — 3” performance declined from 99.5% to
≈ 35% when tested with packed malware. We also observed that
optimized packing does not decrease the detection rate, in fact, it
slightly increases the chance of malicious software being detected,
as compared to the standard packing. Additionally, for engines, such
as “E — 5”, we observe that no results were reported for benign
packed binaries, while achieving 100% in other categories. This can
be attributed to the low confidence of the engine in labeling benign
packed samples.

Key Finding: Although packing reduces the detection rate of ma-
licious software, it has no effect on the benign software detection
rate. Optimized packing has a higher malware detection rate in
comparison with default packing.

RQ10. How do stripped software affect the engines’ per-
formance? There is no noticeable decrease (<1%) in the detection
accuracy of stripped software in the case of online engines. In fact,
for some engines (i.e., “E — 24”), the malware detection performance
increased from 50.34% to 85.21% after stripping.

Key Finding: Stripping has no negative effect on the performance
of the engines, albeit increasing the accuracy in some instances.

RQ11. How do padded software affect the engines’ perfor-
mance? Binary padding significantly decreases the performance of
several online engines, such as “E — 2”, “E — 3”, and “E — 22”. This
is maybe attributed to the fact that appending binaries disrupt the
existing signatures. The online engines’ reports show that > 53% of
them are affected negatively, with > 14% of them exhibiting a dras-
tic decrease in performance (> 70% decrease). Although padding
does not affect the reverse-engineered features, the decrease in
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Figure 6: Industry-standard detection engines robustness
highlight. Binary packing significantly reduces the detection
rate of Malware software (“E — 2”). Binary stripping does
not result in noticeable performance degradation, and may
increase the malware detection rate (“E — 22”). Simple binary
padding to the end of the file may cause significant degrada-
tion in the performance (“E — 3” and “E — 22”).

performance, regardless, indicates that the engines use the raw
binary representations (e.g. binary sequence- and image-based) for
classification, which apparently can be easily disrupted.

Key Finding: Binary padding highly reduces the performance of
several engines, while leaving others intact.

7 CONCLUDING REMARKS
Malware analysis and detection have been the focus of the research
community, with many advances seen in the AI-backed detection
systems. Despite those advances, these systems have been shown
to be vulnerable to several simple-yet-effective adversarial attacks,
such as binary stripping and packing. With this work, we systemat-
ically evaluate the state of a range of malware detectors, proposed
by the research community and industry-standard.

Our efforts show that malware detectors proposed in the litera-
ture are vulnerable to adversarial perturbation and binary manipu-
lation attacks. Similarly, industry-standard malware detectors are
prone to such attacks. Our efforts also unveil the status-quo of the
existing detectors and bring forward various insights to consider
when proposing detection systems. Particularly, in addition to op-
timizing baseline malware detection accuracy, researchers should
consider the robustness of the proposed systems under adversarial
capabilities. Investigating the adversarial settings is crucial to un-
derstand the drawbacks of implemented malware detection models.
In the literature, it has been discussed that incorporating adversar-
ial examples within the training process may increase the model’s
robustness. While this is true to some extent, we argue that training
on specific adversarial settings and configuration does not guar-
antee the robustness under different adversarial attacks, nor same
attack with different configurations. Due to the large space of ad-
versarial perturbation, it is infeasible to train malware detectors on
large set of adversarial attacks. This eventually results in decreased

performance, while still vulnerable to various adversarial settings.
We note that adversarial attacks exploit poor design choices, obligat-
ing for a deep understanding of the underlying learning algorithms
and data representations.
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