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Abstract: Most authorship identification schemes as-
sume that code samples are written by a single author.
However, real software projects are typically the result
of a team effort, making it essential to consider a fine-
grained multi-author identification in a single code sam-
ple, which we address with Multi-χ. Multi-χ leverages
a deep learning-based approach for multi-author iden-
tification in source code, is lightweight, uses a compact
representation for efficiency, and does not require any
code parsing, syntax tree extraction, nor feature selec-
tion. In Multi-χ, code samples are divided into small
segments, which are then represented as a sequence
of n-dimensional term representations. The sequence is
fed into an RNN-based verification model to assist a
segment integration process which integrates positively
verified segments, i.e., integrates segments that have a
high probability of being written by one author. Finally,
the resulting segments from the integration process are
represented using word2vec or TF-IDF and fed into
the identification model. We evaluate Multi-χ with sev-
eral Github projects (Caffe, Facebook’s Folly, Tensor-
Flow, etc.) and show remarkable accuracy. For example,
Multi-χ achieves an authorship example-based accuracy
(A-EBA) of 86.41% and per-segment authorship identi-
fication of 93.18% for identifying 562 programmers. We
examine the performance against multiple dimensions
and design choices, and demonstrate its effectiveness.
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1 Introduction
Authorship identification is well-known in the natu-
ral language understanding community with several
approaches to capture authors’ distinctive stylomet-
ric features [3, 34, 55]. However, most of those ap-
proaches are inapplicable to authorship identification
on structured code due to the inflexibility of the writ-
ten code expressions established by the syntax rules.
Recently, several efforts have investigated authorship
identification of structured code, such as computer pro-
grams [1, 16, 17, 39]. These efforts established that pro-
grammers have distinctive and identifying programming
styles that can survive compilation [18, 39].

Code authorship identification has many useful ap-
plications and can be either binary- or source code-
based identification. Binary-based techniques [5, 18, 39,
48] are applicable to applications such as malware, pro-
prietary software, and legacy code [39]. Source code-
based techniques are applicable when the source code is
available, e.g., in software copyright infringement [28],
code authorship disputes [59], plagiarism detection [15],
and code integrity investigations [38]. Moreover, such
techniques could help in identifying malware authors
who could leave source code in a compromised system
for compilation or where some source-code fragments
could be recovered from the decompiled binaries. Real-
world examples of such codes (or leaked source) in-
clude Mirai and derivatives, Dendroid, Betabot, GM-
bot, Mazar, TinyNuke, etc. (all available on Github).
On the other hand, code authorship identification also
poses significant privacy risks, e.g., for open source
projects whereby contributors wish to stay anonymous.
Exploring such risks by understanding the power of ad-
vanced and fine-grained identification techniques can
raise awareness of the problem and may lead to poten-
tial defenses, which we tackle in this work.

Most of the existing code authorship identification
techniques assume a single author per code sample,
an assumption that does not always hold. For exam-
ple, modern software projects are often the result of
collaborative efforts, even with malware development
due to shared code [39]. As a result, a multi-author
and fine-grained identification from small segments of
code within a single file becomes essential, especially for
forensic applications. Auto-executable code in Java Ap-
plets, ActiveX controls, pushed content, plug-ins, and
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scripts are widely used as an attack vector, and they
can benefit from fine-grained identification operating
on smaller snippets. Recent studies show that more
than 87% of Alexa top 75k sites use JavaScript code,
which is subject to several attacks, including Cross-
Site Scripting (XSS) and Cross-site Request Forgery
(CSRF). Such attacks are executed using scripts in their
source forms [4, 44, 50]. Being able to identify malicious
code at a fine-granularity would help in malware attri-
bution. However, conducting a fine-grained identifica-
tion would have more subtle privacy implications.

Unlike the single author identification, multi-author
identification in a single code sample raises more chal-
lenges, such as defining the boundaries of code pieces to
be analyzed for authorship attributions. Moreover, the
number of contributing programmers to a code sample
could be arbitrarily large, and a multi-author identi-
fication system should be capable of identifying code
authors even with a single line of code. Identifying pro-
grammers given such limited information requires pow-
erful tools and abstractions to capture authorship at-
tributes for accurate identification.

This paper contributes to multi-author code au-
thorship identification by introducing Multi-χ, a fine-
grained approach for identifying multiple authors of a
code sample based on deep learning. The proposed ap-
proach addresses the above challenges and incorporates
techniques for code representation, deep learning, and
ensemble classification. We accomplish the multi-author
identification by following five main steps (Figure 1).
We begin with the source code presentation, where
any given code sample is divided into a sequence of
small segments to avoid authorship collision of the same
segment. These segments are then incrementally inte-
grated into larger segments using the verification pro-
cess, where RNN models are trained to decide whether
two consecutive segments are written by the same au-
thor or not. Following that, the integrated segments are
fed to an authorship identification process, where RNN
models are trained to identify the authors of these seg-
ments. In evaluating Multi-χ, we investigate the effect of
various techniques for code representation, deep learn-
ing architectures, and classifiers.
Contributions. We propose Multi-χ, a fine-grained
method for identifying multiple authors contributing to
a single source file. We evaluate Multi-χ using a large
dataset of multi-author source-code files collected from
Github and show its accuracy. We evaluate Multi-χ
across multiple dimensions and design choices. Multi-χ
enables multi-author verification and identification on
small fractions of code; i.e., it can identify multiple au-

thors line-by-line. We examine the effect of code repre-
sentation on modeling authorship attributions. We use
a word2vec technique to generate distributed represen-
tations of code terms that enable authorship verification
on small segments (e.g., segments with one line of code).
Moreover, we also use TF-IDF technique to represent
larger segments for the authorship identification task.
Multi-χ is lightweight since (a) it does not produce a
large number of sparse features of code samples, but a
small number of compact representations in proportion
to the sequence size, (b) it does not require code pars-
ing, syntax tree extraction, nor explicit feature selection.
Multi-χ takes advantage of RNN-based deep learning
techniques to generate discriminative author features.
Summary of Results. Using a large dataset of real
open-source projects, our approach achieves high accu-
racy on the three targeted tasks:

– Code Authorship Verification: using word2vec
representations of code segments with one line of
code, the RNN model of Multi-χ can achieve an F1-
score exceeding 88% in determining whether two sub-
sequent segments are written by the same program-
mer. The F1-score reaches 93.85% when using deeper
(multi-layer) bi-directional RNN.

– Code Segment Authorship Identification: using
ground-truth data, we examine the sufficient size and
number of samples per author needed to identify au-
thors. Our approach achieves an accuracy of 92.12%
for 479 authors when the number of samples is ten
per author and the size of each sample is at least ten
lines of code. This accuracy increases to 94.4% when
the sample count increases to 30 samples per author.
Moreover, the accuracy increases when using TF-IDF
representations instead of word2vec, to reach 92.82%
when the sample count is 10, and 96.14% when the
sample count is 30 samples per author.

– Code Authorship Identification: for the overall
system evaluation, we were able to identify multiple
authors in 5,321 code files including 562 program-
mers with an Authorship Example-Based Accuracy
(A-EBA) of 86.41% and an overall per-code-segment
authorship identification accuracy of 93.18%.

Organization. The remainder of the paper is struc-
tured as follows. We review the related work in §2. In
§3, we present the overall deep learning-based system for
source-code multi-author identification. In §4, we evalu-
ate our approach and show the experimental results. §5
discusses the limitations of our work and directions for
future work. Finally, we provide our conclusion in §6.
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Table 1. A summary of the related work. (*) Single sample attribution, where the authorship attributions are extracted from a single
sample. (+) Multiple sample attribution, where the authorship attributions are extracted/merged from multiple samples.

Reference #Author Author per code Programming Languages Accuracy Technique

Abuhamad et. al. [1] 8903 Single C++ 92.30% RNN and Random Forest
Abuhamad et. al. [1] 3458 Single Python 96.20% RNN and Random Forest
Abuhamad et. al. [1] 1952 Single Java 97.24% RNN and Random Forest
Caliskan-Islam et. al. [17] 1600 Single C++ 92.83% Random Forest
Caliskan-Islam et. al. [17] 229 Single Python 53.91% Random Forest
Steven Burrows et. al. [16] 100 Single C, C++ 79.90% ANN
Steven Burrows et. al. [16] 100 Single C, C++ 80.37% SVM
Alsulami et. al. [6] 70 Single Python 88.86% LSTM and BiLSTM with Random Forest
Ding and Samadzadeh [24] 46 Single Java 62.70% Canonical Discriminant Analysis
Frantzeskou et al. [29] 30 Single C++ 96.90% Nearest Neighbor with rank similarity
Ivan Krsul [35] 29 Single C 73.00% discriminant analysis
Lange and Mancoridis [36] 20 Single Java 55.00% Nearest Neighbor with rank similarity
Elenbogen et. al. [25] 12 Single C++ 74.70% Decision Tree
Alsulami et. al. [6] 10 Single C++ 85.00% LSTM and BiLSTM with Random Forest
Steven Burrows et. al. [14] 10 Single C 76.78% Mean Reciprocal Ranking
Frantzeskou et al. [29] 8 Single C++ 100.00% Nearest Neighbor with rank similarity
MacDonell et al. [37] 7 Single C++ 81.10% ANN and multiple discriminant analysis
MacDonell et al. [37] 7 Single C++ 88.00% Case-Based Reasoning
Pellin [45] 2 Single Java 88.47% SVM

Meng et. al. [39] 284 Multiple C, C++ binaries 65% SVM and random forest
Dauber et. al. [22] 106 Multiple (*) C++ 73% Random Forest
Dauber et. al. [22] 106 Multiple (+) C++ 99% Random Forest

This work 282 Multiple (*) C, C++ 97.31% RNN with random forest
This work 843 Multiple (*) C, C++ 88.89% RNN with random forest

2 Related Work
Authorship attribution at a document-level started in
the 19th century, with the first attempts to quantify
authors’ writing style [47]. However, it has not been un-
til the past twenty years that researchers started to ex-
plore authorship attribution for software programmers.
Generally, software authorship identification can be cat-
egorized into two types of works. First, the code author-
ship identification with the assumption that each code
sample was written by a single programmer. Herein, the
code sample can be in a source or binary format. Second,
the code authorship identification with the assumption
of collaborative authorship.

2.1 Single-Author Code Identification

Two approaches are considered to identify a program-
mer of software based on the available code form,
which are source code and executable binaries. Several
techniques for identifying programmers when only ex-
ecutable machine code is available [18, 39, 48]. On the
other hand, most of the works on code authorship iden-
tification are conducted on source code [14, 16, 17, 24,
25, 29, 35–37, 45]. The prior works on a single source-
code authorship identification assume that each sample

of code is written by a single programmer and exhibit
features and characteristics of the programmer, which
can be used as indicative of authorship. Examples of
such features include layout features (spacing, indenta-
tion, boarding characters, etc.), style features (variable
naming, choice of statements, comments, etc.) and en-
vironment features (computer platform, programming
language, compiler, text editor, etc.).

Several approaches and tools have been adopted
for source-code authorship identification, such as sta-
tistical analysis, machine learning, or similarity-based
ranking [16]. In particular, Krsul et al. were among the
first to explore the possibility of identifying the au-
thor of source code using handcrafted features based
on the programming style [35]. In their work, they ap-
plied a statistical analysis technique called the multi-
variate discriminant analysis to identify 29 program-
mers. Frantzeskou et al. [29] exploited low-level n-grams
features extracted from source code along with a simi-
larity ranking technique to identify a small number of
programmers. Caliskan-Islam et al. [17] exploited the
abstract syntax trees of source codes to extract sty-
lometry features for programmers identification. Re-
cently, Abuhamad et al. [1] utilized RNN to generate
deep representations of authorship that enabled large-
scale code authorship identification. Their experiments
are conducted to cover all programmers participating
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in Google Code Jam competition in four programming
languages. Similar work, presented in [2], proposed a
convolutional neural network (CNN) approach to iden-
tify authors of source code. The authors reported that
their CNN-based approach can achieve an identification
accuracy exceeds 99% for 150 programmers.

2.2 Multi-Author Code Identification

Identifying multiple authors of source code is related
to multi-label learning, in which multiple labels are to
be given to an unlabeled sample. Techniques for multi-
label learning are well explored in several domains, in-
cluding document classification and image recognition.
The literature of multi-author identification is limited
to the context of textual documents [23, 31, 43, 49],
source code [22], and program executable binaries [39].
Payer et al. [43] introduced deAnon, a framework for de-
anonymizing authorship of academic submissions. Us-
ing ensemble classifier, deAnon achieved an accuracy of
39.7% for identifying 1,405 possible authors from the
first guess, and an accuracy of 65.6% from the first ten
guesses. Dauber et al. [23] applied stylometry features to
identify multi-authored documents from Wikia. The au-
thors extended their analysis to include different possi-
ble application scenarios when using both relaxed classi-
fication and multi-label classification techniques. Sarwar
et al. [49] proposed Co-Authorship Graph (CAG) tech-
nique to attribute different parts of documents to mul-
tiple authors. Using dataset of academic papers, CAG
technique enabled accurate identification of 707 authors
with an accuracy of 72.17%.

For source-code multi-author identification, the
most closely related work is Dauber et al.’s seminal
work in [22], which extends the work of Caliskan-Islam
et al.’s [17] by attributing programmers of small code
samples using a dataset obtained from Github consid-
ering multiple programmers for code files. The main
difference between our work and Dauber et al.’s is as
follows: First, their work used the stylometry features
extraction process of [17], a process is shown to produce
high-dimensional sparse representations, to extract the
code features. Moreover, their feature extraction pro-
cess requires code parsing, syntax tree extraction, and
explicit feature evaluation and selection. Our work re-
duces the burden of feature extraction by taking advan-
tage of deep learning to generate high-quality author-
ship attributions that enable large-scale identification.
Our feature extraction relies on an RNN-based architec-
ture that does not require additional steps nor feature

selection process. Second, their work achieved an iden-
tification accuracy of 99% for 106 programmers given
that each programmer has at least 150 code samples
when considering multiple-sample attribution (by ag-
gregating attributes of 50 samples). The authors ad-
dressed the multiple-sample attribution assuming that
code segments can be collected from platforms with a
version control system and accounts, e.g., Github, Git-
lab, etc. The collection of segments for the same author
can be attributed and aggregated to contribute to suc-
cessful identification. Another suggested way to collect
code samples for the same user is by clustering. Under
this assumption, the presented results show a promis-
ing direction to identify multiple authors of source code.
However, aggregating multiple samples (such as 50 sam-
ples) could limit the applicability of this method in prac-
tice. Our work considers identifying authors of source
code based on a single-sample attribution and raising
the challenge to scale even to more authors in open-
source projects. Table 1 summarizes most related works
for code authorship identification.

3 Multi-χ: An Overview
Multi-χ contributes to solving the multi-author code
authorship identification problem using an RNN-based
system (§3.7) that incorporates five processes, which
are: code processing and segmentation (§3.2), code se-
quence representation (§3.3), code authorship verifica-
tion (§3.4), code segment integration (§3.5), and code
authorship identification (§3.6). The overall process op-
erates is shown in Figure 1. First, code samples are di-
vided into small segments, then code segments are rep-
resented as a sequence of n-dimensional term represen-
tations. The word2vec representations are then fed into
an RNN-based verification model to assist the segment
integration process which integrates positively verified
segments, i.e., integrate segments that have a high prob-
ability of being written by one author. Finally, the re-
sulting segments from the integration process are rep-
resented using word2vec or TF-IDF embedding and fed
into the authorship identification model.

However, before delving into the details of our RNN-
based identification system, we first define some nota-
tions required for understanding the code multi-author
identification task that we address in this work (§3.1).
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Fig. 1. The general outline of the proposed approach. The code authorship verification includes processing code segments represented
by word2vec to the verification model. The code authorship identification includes integrating code segments based on the verification
process to be represented using word2vec or TF-IDF for the identification model.

3.1 Notations and Definitions

We treat the source-code sample C as a sequence of
terms, t0, t1, . . . , tl−1 where ti ∈ Z is the i-th term in
the sequence. For example, a term can be a reserved
keyword, a variable name, or an operator. We denote
m segments in a sample code by S0, S1, . . . , Sm, where
a segment is a sequence of terms. Two segments can
overlap if necessary. Terms of a segment Si are labeled as
Si,t0 , Si,t1 , . . . , Si,tl−1 . Segments are written by authors
a0, a1, . . . , an−1, where segment Si is assigned to a single
author ai who contributed the most in writing it. Note
that we defined the source code as segments of a set
of terms, rather than functions. Therefore, Multi-χ can
handle incomplete codes without requiring a parser to
extract functions or the abstract syntax tree (AST).
Task Definition. Given a source-code sample C with-
out any information about the authors (a0, . . . , an−1) of
this sample, the following tasks are defined:

– Code Authorship Verification: Given two sub-
sequent segments of code Si and Si+1, determine
whether the segments belong to the same author ai.

– Code Segment Authorship Identification:
Given Si, identify ai who wrote the segment.

– Code authorship identification: Given code C,
identify the contributing authors {a0, . . . , an−1} who
wrote C. In other words, we identify all authors in-
volved in writing all segments of C.

– Open-World Identification: Given code C, find
{a0, . . . , an−1, an+}, where an+ is one or more exter-
nal authors who do not appear in the training data.

Code authorship identification is a superset of code
authorship verification and segment authorship identifi-
cation, while open-world identification is a superset that
includes all of the other tasks. The foci of this work are
the first three tasks; we leave the last as future work.

3.2 Code Processing and Segmentation

The first process for our fine-grained code authorship
identification is segmentation. This process is performed
using a sliding window, similar to the method adopted
by Fifield and Follan [27], over the entire code sam-
ple. Applying a sliding window of size K and a stride
R, the segmentation process generates a set of M code
segments {S0, S1, · · ·, Sm}, where each segment Si

is assigned to an author ai based on a ground-truth
dataset. Consider a code C, presented as N pairs of
lines and their corresponding ground-truth authors,
i.e., {(l0, a0), (l1, a1), . . . , (ln−1, an−1)}. The segmenta-
tion divides C into M = N−K+p

R + 1 segments, where
p is the number of empty lines padded on the last seg-
ment (p = K − (N mod K)). For example, using K = 6
and R = 4 over a code file with 86 lines would result in
M = 86−6

4 + 1 = 21 segments.
The purpose of this process is to divide the code into

smaller segments for the verification task (i.e., checking
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Fig. 2. Number of segments written by one author and multiple
authors in nine open-source projects.

whether two consequent segments belong to the same
author). With the assumption that this task is per-
formed without any prior knowledge on the number of
lines written by a single author in a code sample, the
window size K can be a hyperparameter, tested and de-
termined by experiments.

A segment is labeled based on the author who con-
tributed most to it. Assigning authors in this way comes
with some caveats since a segment can include codes of
multiple authors, resulting in noise that may affect seg-
ments attribution. Thus, choosing the sliding window
size is crucial. In particular, the sliding window should
be small enough to recognize authors, and large enough
to be correctly assigned to the right author. We based
our selection of the window size on the experiments and
statistics of real-world software projects.

Based on nine open-source libraries, Figure 2 shows
that segments of code written by multiple programmers
are very common. In fact, segments of length greater
than 12 lines are more likely to be written by multiple
programmers. This, in turn, motivates for introducing
our fine-grained technique to identify programmers of
a given code. By further analyzing the authorship of
code segments, Figure 3 shows the number of segments
written by a specific number of users. Even with small
segments, e.g., six lines of code, there is a possibility
that more than four programmers are involved. This
possibility increases as the size of the segment increases.
Therefore, defining the segment size for authorship iden-
tification is a challenging task that motivates our code
authorship verification process prior to identification.

3.3 Code Sequence Representation

Code segments can be viewed as matrices, where each
segment is a matrix with row representations, i.e., word
embeddings, of tokens present in that segment. Given
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a large dataset, word embeddings can be learned us-
ing a prediction-based approach or a frequency-based
approach. Recently, prediction-based methods, such as
word2vec [58] and GloVe [46], have shown remarkable re-
sults. The frequency-based approach, such as TF-IDF,
Co-Occurrence representations, and variations of both,
are also studied. This work utilizes two methods of rep-
resenting code samples: word2vec and TF-IDF.
Word2vec Representations.We use word2vec to rep-
resent code samples for deep learning models. Choosing
the word2vec method is for several reasons. First, the
word2vec approach provides distributed representations
of tokens in a vector space allowing us to group sim-
ilar tokens. Such a feature facilitates better language
modeling [9]. Second, word2vec, as a learning method
of generating distributed representations of tokens, has
shown remarkable success in a wide range of applica-
tions (e.g., [20, 32, 41, 51, 53]).

We consider segments of source code as sequences
of terms and expressions for training a word2vec model,
which in turn is used to generate representations of code
terms and expressions. Generating code representations
using word2vec model requires some consideration due
to the unconstrained and wide range of used terms. The
source code includes variable names, language-specific
keywords, and special characters that are part of the
language rules. Unlike natural language texts, source
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codes include variable names that are not subject to
syntactic or semantic rules. This results in a high num-
ber of terms with very low frequency as shown in Fig-
ure 4. To this end, we used around 153K unique terms
out of a corpus of more than 26K C/C++ files to train
a word2vec model. The word2vec model encodes similar-
ities between terms as the distance between their rep-
resentation vectors, where each term is represented as
R128 vector of real values.

Representing segments of code as sequences of term
representations, we aim to train RNN models that are
capable of distinguishing authorship traits even with
small sequences. This benefits the performance of the
verification process, where often small segments (e.g.,
can be limited to one line of code) are targeted.
TF-IDF Representations. In TF-IDF, a term t in file
d of a corpus D is assigned a weight using

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D),

where TF(t, d) is the term frequency (TF) of t in d and

IDF(t,D) = log(|D|/DF(t,D)) + 1,

where |D| is the number of documents in D and DF(t,D)
is the number of documents containing the term t. In
evaluation, code samples are represented by TF-IDF
representations of uni-grams, bi-grams, and tri-grams.
Considering our dataset, the TF-IDF representations of
code pieces are sparse and high-dimensional. Therefore,
we represent code segments with the top 3,000 TF-IDF
features based on the order of term frequencies across
all code segments. Based on preliminary experiments,
the top 3,000 features are sufficient to represent code
segments. Even with this feature selection, small seg-
ments are represented in sparse vectors, thus we only
use TF-IDF representations in the code identification.
Representation Learning. The word2vec models and
TF-IDF vectorizers are constructed using the training
dataset only. When applying the representation scheme,
out-of-vocabulary (OOV) problem may occur during the
validation and testing part of the experiment. There are
several approaches for handling the OOV problem [10].
In this study, unseen terms are represented with zero-
vectors when using word2vec and ignored in TF-IDF.

3.4 Code Authorship Verification

Adapting a fine-grained approach to identify multiple
authors of a code sample requires distinguishing the
boundaries of code pieces written by different authors.
To accomplish that, we propose a code authorship verifi-
cation process. This process aims to determine whether
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Fig. 5. Number of terms per code lines in our dataset. The maxi-
mum number of terms is 17,315, while the average is 7.6 ≈ 8.

two subsequent segments are written by the same au-
thor. This task requires training a model capable of es-
tablishing a decision of whether a given segment Si+1
belongs to the same author of Si or not. We utilize
RNN to perform this task and investigate the per-
formance of various RNN model architectures under
various experimental configurations. Given two subse-
quent code segments, Si with length l and Si+1 with
length k, the verification model takes vector representa-
tions of both segments’ terms. Si,t0 , Si,t1 , . . . , Si,tl−1 and
Si+1,t0 , Si+1,t1 , . . . , Si+1,tk−1 , as an input of size l + k

(terms) and generates a decision based on an output
probability of a softmax function that signifies whether
the two segments are written by the same author. For
this task, we preserve the order of terms in a code seg-
ment to enable the recognition of a pattern change when
two segments are written by different authors.

3.5 Code Segments Integration

Subsequent segments that are written by the same au-
thor can be integrated into one larger segment. This step
is important as larger segments exhibits more indica-
tive authorship attribution than smaller segments. To
automate the integration process using our fine-grained
approach, we use the authorship verification model to
essentially decide whether two subsequent segments are
written by the same author. Subsequent segments that
are positively verified for the same author are then inte-
grated into one piece. It is designed to include as many
lines as possible for the same author to help correctly
identify the author since, intuitively, the more infor-
mation available the better the identification accuracy.
When two subsequent segments are not assigned to the
same author, each segment is considered individually for
the identification process.
Handling Small Segments. When choosing a small
segmentation window (such as K = 1 line of code),
the expected number of terms per segment is equal to
eight terms, on average, as illustrated in Figure 5. How-
ever, there exists a number of segments that are very
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small (e.g., with length less than three terms). The in-
tuitive reasoning behind such cases is that small seg-
ments are not written individually but are rather writ-
ten by the same author of the previous or following seg-
ments. When looking at two subsequent segments with
one line of code each, the chances that these two subse-
quent segments are written by the same programmer is
approximately 85% as shown in Figure 2. Considering
the distribution of the number of terms per line, these
chances increase significantly (to more than 99%) when
the number of terms is equal to or less than three terms.
Therefore, when a small segment is presented, we inte-
grate it with the previous one without verification. We
understand that this assumption does not always hold,
but excluding small segments from the code authorship
verification positively enhances the overall performance,
while not giving up significantly the accuracy.

3.6 Code Authorship Identification

The essential step in our system is to identify multi-
ple authors of a single code sample. Our approach to
achieving accurate multi-author code authorship iden-
tification is adopting a fine-grained approach where the
identification of code segments contributes to the over-
all identification accuracy. Assigning authors to code
segments is performed using RNN models trained to
capture distinctive authorship attributions to enable ac-
curate identification. For this task, we investigate two
methods to represent code samples for the RNN model
(i.e., the sequence of word2vec and one vector of TF-
IDF). For word2vec representation, segments with at
least n lines and m terms per lines are represented as a
sequence of n×m× d, where d is the dimension of term
representation. Since the sequence length varies, we fix
the length as the least number of lines n multiplied by
m = Linecommon = 20 number of terms. Therefore, code
sequences are padded/truncated to fit the fixed size. The
other representation method for code segments is the
TF-IDF. Unlike the verification task, the identification
task uses larger segments, and each exhibits a sufficient
number of terms. Using TF-IDF representation, the in-
put for the RNN model is one step sequence per sample.

Moreover, we investigate the performance of RNN
models with both softmax classifier and a random for-
est classifier (RFC) [11]. For scalability and robustness,
several works [1, 17, 22, 39] adopted RFC for code
authorship identification. Therefore, we also use RFC
over code sequence embeddings that are generated from
trained RNN-based models. In all experiments, we con-

struct RFC with 300 trees grown to the maximum ex-
tent. Based on the experiments, and using 300 trees is
a sufficient trade-off between accuracy and efficiency.

3.7 RNN Models and Experiment Settings

Our method to capture code authorship attribution
from a sequence of terms and expressions makes RNN as
a prime candidate for this modeling task. RNN models
are well-known to handle input sequences and capture
temporal relations and distinctive patterns within the
data. To this end, Multi-χ explores the performance
of different RNN structures namely, traditional sim-
ple RNN, Long Short-Term Memory (LSTM) [33], and
Gated Recurrent Unit (GRU) [19]. The reason for in-
vestigating three units is that simple RNNs are efficient
and capable of handling data sequences, but result in
poor performance under long-range temporal dependen-
cies in long sequences. Handling segments of code with a
large number of terms could hinder the learning process
of models when suffering from known conditions such
as vanishing or exploding gradients [19, 33]. Thus, we
extend our investigation to take advantage of the gat-
ing mechanism offered by LSTM and GRU to handle
such problems. Moreover, LSTM and GRU have shown
remarkable results in modeling long sequences [1]. We
use RNN models for both authorship verification and
identification tasks. Each model differs in purpose and
structure since the output of each model is different (two
softmax units in the verification models, while n-units
for n-classes in the identification models). However, the
general basic structure of the models includes one recur-
rent layer connected to a softmax layer as illustrated in
Figure 6(a). In this section, we explain the model archi-
tectures adopted in this work as well as the procedure
and considerations taken while training the models.
Bidirectional RNN. At each time step within the se-
quence, the simple RNN takes advantage of the infor-
mation learned from past states in generating the cur-
rent state that will also be propagated to future states.
Learning sequential patterns in this way is important in
many applications where the temporal component of the
input data should not be ignored (e.g., real-time speech
or handwriting recognition). However, for code author-
ship attribution, accessing the entire code sequence at
once could enable not only learning from past states but
also from future states. This can be achieved using bidi-
rectional RNN, which incorporates two RNNs trained to
make the output decision. The first RNN operates from
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Fig. 6. Different RNN model architectures used for code authorship verification and identification.

the beginning to the end of the sequence, while the other
operates in the opposite direction as in Figure 6(b).
Multi-layer RNN. Deep RNNs with multiple hidden
layers have shown a remarkable capability of capturing
nonlinear patterns from long input sequences [52]. In
this work, we also investigate the performance of Multi-
χ using multi-layer RNN. Figure 6(c) shows an example
of an RNN with multiple hidden layers.
Model Training and Settings. Since RNN models
are parameterized, the training process aims to find
appropriate parameters that enable the model to per-
form a given task. For authorship verification and iden-
tification, the model training is guided by minimiz-
ing the softmax cross-entropy loss between the ground-
truth labels and the model output. The training pro-
cess starts by initializing the model with weights drawn
from a normal distribution near zero with zero-mean
and small variance. Then, the optimization process is
performed using the Root Mean Square Propagation –
RMSProp [57] algorithm, which is commonly used with
RNN [52]. The optimization process requires setting
a learning rate that scales the entire gradient at each
training step. Using a high learning rate can cause a di-
vergence, while using a very low value can lead to a slow
convergence or settling to a local optimum. In the liter-
ature, starting with a large learning rate and decreasing
it over time during the training process has been an ef-
ficient way of setting the learning rate. In this work,
we scale the learning rate to αn = αc × NI− 1

2 , where
NI is the number of iterations, αn is the new value,
and αc is the current value. We set the starting learning
rate at 10−2 and the L2-regularization strength at 10−4.
To control the training process and prevent overfitting,
we use the dropout regularization technique [54], which
enables the neural network to reach better generaliza-
tion capabilities. We set the dropout rate to 0.3 during
the training of all RNN models. The termination crite-
rion of the training is set to concluding 1,000 training
iterations. The training hyperparameters are based on
preliminary experiments on different tasks.

Dataset Handling and Splitting. Since we adopt a
data-driven approach to obtain RNN-based models, the
dataset is split into three sets, 70% for training, 15%
for validation, and 15% for testing. The use of the three
splits is straightforward, where the training set is used to
train the model, the validation is used to validated the
model during the model optimization, and the testing
set is used to test the performance of the model on the
targeted task. This mechanism is followed for training
the RNN-models in all experiments of the authorship
verification (§4.2) and segment authorship identification
(§4.3) tasks. We note that the experiments in §4.2 and
§4.3 aim to establish proper settings for fine-grained au-
thorship identification approach (using end-to-end iden-
tification as in §4.4) by investigating the effects of code
segment size, data representation, model structure, and
experimental hyperparameters on the performed task.
To this end, code segments are collected and processed
based on the ground-truth dataset. The entire collection
of code segments is then shuffled and split into training,
validation, and testing sets.
Handling Class Imbalance. To address the class im-
balance in our dataset, we use class weights (percentage)
to penalize the wrong predictions and to scale the loss
function during the training process.
Handling Code Segments of Different Length.
Since segments consist of lines of code with a differ-
ent number of terms, the resulting segments differ in
length. The recurrent neural network can process se-
quences with different lengths, using dynamic RNN or
sequence padding/truncating to a defined extent. Effi-
cient handling of unequal input sequences may dictate
using the mini-batch approach, where a number of seg-
ments are packed into a matrix of predefined dimension
that becomes the dimension of the input sequences by
padding short sequences or truncating long sequences.
On the other hand, dynamic RNN computes gradients
from one sample at a time raising the challenge of re-
ducing the effects of the large variance of computed gra-
dients. Thus, we adopt the mini-batch approach for ef-
ficiency since several segments are handled at once. In
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Table 2. Code authorship verification: summary of results using different RNN architectures and different segment sizes

Window LSTM Bi-LSTM Multi-layer LSTM Multi-layer bi-LSTM
P R F1 P R F1 P R F1 P R F1

1 82.76 96.00 88.89 86.73 98.00 92.02 90.48 95.00 92.68 93.11 94.60 93.85
2 81.66 95.70 88.12 85.55 97.70 91.22 89.17 94.70 91.85 91.27 94.10 92.66
4 79.83 95.00 86.76 83.62 97.00 89.81 87.04 94.00 90.39 89.88 93.20 91.51
6 81.87 94.80 87.86 85.82 96.80 90.98 89.50 93.80 91.60 88.62 93.40 90.94
8 78.73 94.40 85.86 82.46 96.40 88.89 85.77 93.40 89.42 84.08 92.40 88.04
10 76.42 94.00 84.30 80.00 96.00 87.27 83.04 93.00 87.74 79.31 92.00 85.19
12 73.97 93.80 82.72 80.64 95.80 87.57 83.76 92.80 88.05 79.97 91.80 85.48
14 72.44 93.30 81.56 78.89 95.30 86.32 85.62 92.30 88.84 78.17 91.30 84.23
16 69.92 93.00 79.83 76.00 95.00 84.44 78.63 92.00 84.79 75.21 91.00 82.35
18 70.12 92.70 79.84 76.25 94.70 84.48 78.92 91.70 84.83 72.88 92.70 81.60
20 67.15 92.00 77.64 74.60 94.00 83.19 77.12 91.00 83.49 70.96 90.40 79.51
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Fig. 7. Performance of authorship verification models with different architectures and RNN units. Notice that the performance en-
hances with bidirectional RNN and with more depth. All percentage are F1-score.

our experiments, code segments with K lines of code
are padded/truncated to size K × Linecommon, where
Linecommon is the line length threshold that most of the
code lines satisfy. In our dataset, we use Linecommon =
20 as illustrated in Figure 5.

4 Evaluation and Experiments
We evaluate Multi-χ using real-world open-source code
samples collected from Github. The evaluation includes
the code authorship verification task and the code au-
thorship identification task using various RNN-based
models with different architectures and settings. All ex-
periments are conducted on a workstation with 24 cores,
one GeForce GTX Titan X GPU, and 128 GB of mem-
ory. The specific platform does not affect the results.

4.1 Dataset

Multi-χ uses a real-world dataset of nine open-source
projects available on Github, namely: Caffe Library,
Cosmos Algorithms Collection repository [21], Dyninst
API tools for binary instrumentation [13], Facebook
Open-source Library (folly) [26], GNU Compiler Collec-
tion (GCC) [30], Apache HTTP Server [7], Open Source

Computer Vision Library (OpenCV) [42], Swift Pro-
gramming Language [8], and TensorFlow Library[56].
We use git-author [40] tool to collect the ground truth
for authors of all projects. Git-author returns the author
for each line of code. We process the code files to remove
comments, empty lines, or files that do not have a code.
After processing and cleaning all code files, the collected
dataset contains 26,607 code files (84.7% C files while
the rest are C++ files) with an average of 114 lines per
file. The total number of authors is 2,220 programmers
with an average of 1,377.9 code lines per programmer.
We notice that the number of code lines per program-
mer is not balanced: for example, there is a programmer
with 195,948 lines, while 170 other programmers have
only one line of code in the entire collection of samples.

4.2 Code Authorship Verification

The purpose of this experiment is to obtain an author-
ship verification model that is able to distinguish seg-
ments from different authors. For this purpose, differ-
ent architectures of RNN models are explored using dif-
ferent window sizes (i.e., lines of codes per segment).
Since the verification task can be viewed as a binary
classification, the results are reported using three eval-
uation metrics: precision= T P

T P +F P , recall= T P
T P +F N and
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F1-score=2× P ×R
P +R , where TP , FP , FN , P , and R are

the true positive, false positive, false negative, preci-
sion, and recall respectively. Using these metrics pro-
vides a realistic evaluation of the verification model as
the dataset contains unbalanced labels. For example, us-
ing a small segmentation window (e.g., one line of code)
produces a dataset with a large number of subsequent
segments written by the same author, and thus the pos-
itive labels are more prevalent than the negative labels.
As F1-score provides a harmonic mean of precision and
recall, we train the models with special emphasis on im-
proving the recall to increase the sensitivity for negative
verification. To this end, the class weights are used to
weigh the loss function during the training process.
Word2vec Input Representation. For this experi-
ment, we feed the RNN model with code segments rep-
resented as a sequence of word2vec representations. Seg-
ments with n lines are represented as a sequence of
size n × Linecommon × d, where d is the dimension of
terms representation. For example, a segment with one
line is represented as tensor of size 1 × 20 × 128, since
Linecommon = 20 and the dimension of word2vec rep-
resentations is 128. For the verification models, we use
RNN with 64 hidden units and a maximum of two hid-
den layers when using multi-layers RNN architectures.
Results. Table 2 reports the verification performance
of different LSTM architectures (i.e., Basic LSTM, Bi-
LSTM, Multi-layer LSTM, and Multi-layer bi-LSTM)
using datasets generated with different segmentation
windows. The results reveal that segments with one
line of code enable the best performance across differ-
ent model architectures. We note that the best verifi-
cation results are obtained using multi-layer bi-LSTM
with F1-score of 93.85% verifying one-line segments.
This can be because of the nature of the ground-truth,
since labels are assigned to lines of code, making seg-
ments with multiple lines more prone to noise that hin-
der the verification process. This also explains the infe-
rior results obtained with larger segments, e.g., 14.34%
(= 93.85−79.51) difference in F1-score between one-line
segments and 20-lines segments.

The performance of different RNN units—simple
RNN, LSTM, and GRU—is shown in Figure 7(a) us-
ing the F1-score. The results show that LSTM outper-
forms other units, especially when the window size is
small. The bi-directional RNN shows an improvement
over uni-directional RNN as in Figure 7(b). Moreover,
deeper architectures with multiple layers achieve better
results as illustrated in Figure 7(c) and Figure 7(d).

Table 3. Number of authors in the dataset based on the least
number of samples and the minimum number of lines per sample.

Least # of lines per sample
4 6 8 10

#
of

sa
m
pl
es 6 843 730 660 608

10 689 606 529 479
20 525 459 393 346
30 452 376 316 282
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Fig. 8. Accuracy of authorship identification achieved by RFC
using different word2vec-RNN-based embeddings sizes using a
dataset of 282 programmers with at least 30 samples.

4.3 Code Authorship Identification

In this experiment of code segment authorship identifi-
cation, we use the ground-truth data to collect code seg-
ments and the corresponding authors. Conducting ex-
periments using the real ground-truth data allows us to
define a baseline for the end-to-end system evaluation.
Moreover, the ground-truth provides insights on the
used methods at each phase and the sufficient amount
of data required to achieve accurate authorship identi-
fication (e.g., the number of samples and the minimum
number of code lines per sample).
Collections of Code Samples. From the collected
dataset, we created 16 subsets based on the number
of samples per author of varying sample sizes. Table 3
shows the datasets used in the experiment. As we add
more constraints to the dataset, the number of authors
decreases. Using the datasets of Table 3, we investigate
the minimum number of samples per author—6, 10,
20, and 30 samples—for successful authorship identi-
fication. Moreover, we also investigate the effect of code
size, i.e., the number of code lines in a code segment,
on the authorship identification. We consider segments
with a minimum number of code lines, four to ten.
Model Architecture. Based on experiments and re-
sults obtained from the verification task in §4.2, we uti-
lize two-layers of bidirectional RNN with 512 hidden
units connected to a softmax layer. The experiments
are conducted with traditional RNN, GRU, and LSTM
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Fig. 9. Accuracy of authorship identification for authors with at least specific number of samples with different sample sizes repre-
sented using word2vec. The RNN architecture is two-layers bi-LSTM with 512 units connected to a softmax classifier.
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Fig. 10. Accuracy of authorship identification for authors with at least specific number of samples with different sample sizes repre-
sented using TF-IDF. The RNN architecture is two-layers bi-LSTM with 512 units connected to a softmax classifier.

units. We use a large number of hidden units, i.e., 512
units, to allow the network to learn distinctive and high-
quality sequence embeddings of authorship traits. These
sequence embeddings enable the classifier, e.g., softmax
classifier or RFC, to accurately identify programmers of
presented code samples. For example, Figure 8 shows
the results of the identification task performed by RFC
using sequence embedding with different sizes. The re-
ported results are produced using a dataset of authors
with at least 30 samples with 10 lines of code as the min-
imum size for a sample. The results show an identifica-
tion accuracy improvement when increasing the size of
the embeddings, e.g., by 4.79%(= 94.4−89.61) when in-
creasing LSTM-based embeddings size from 64 to 512.
Experiment 1: Effects of Input Representation.
We investigate the effect of using different represen-
tations of code samples on the accuracy of the pro-
posed authorship identification task (i.e.,word2vec and
TF-IDF). Figure 9 shows the accuracy of our identi-
fication approach using word2vec representation with
varying samples per author and varying sample sizes.
In particular, Figure 9(a) illustrates that our approach
with LSTM unit is superior to other units and achieves
60.32% for 843 programmers with at least six code sam-
ples and four lines per sample. As the number of lines
per sample reaches 10, we achieve an accuracy of 73.16%
for 608 programmers. We also illustrate the impact of

the number of samples per author on the performance
of the identification process. Using LSTM, Figure 9(b)
shows an accuracy of 75.94% for 479 programmers when
the number of samples is at least ten, with at least
ten lines per sample. This accuracy increases to 79.64%
for 346 programmers when the number of samples is
doubled as shown in Figure 9(c). However, the accu-
racy slightly decreases when increasing the number of
samples to exceed 30 samples per author. Figure 9(d)
shows an accuracy of 78.12% for 282 programmers us-
ing LSTM. This decrease can be explained by the fixed
training process for all experiments, where the intuitive
procedure for training a model with a large dataset re-
quired more time and a deeper architecture.

Using TF-IDF representations with the same exper-
imental settings, Figure 10 shows the impact of using
TF-IDF representation on the accuracy with a vary-
ing number of samples per author and varying sam-
ple sizes. For instance, Figure 10(a) shows that our ap-
proach with LSTM unit is superior to other units and
achieves 66.84% with at least six code samples and four
lines per sample. As the number of lines per sample
reaches to 10, we achieve an accuracy of 76.87%. We
also illustrate the impact of the number of samples per
author on the performance of the identification process.
Using LSTM, Figure 10(b) shows an accuracy of 79.88%
when the number of samples is at least ten and when
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there are at least ten lines per sample. This accuracy
increases to 81.11% when the number of samples is dou-
bled as shown in Figure 10(c). The best accuracy reaches
83.45% for 282 programmers when using LSTM.
Key Insight. The number of samples per programmer
influences the accuracy of identification, i.e., more sam-
ples means higher identification accuracy. However, the
RNN model seems to learn authorship attributions even
with a small number of samples, e.g., ten samples. Also,
input representation affects the accuracy, i.e., TF-IDF
shows better performance than word2vec.
Experiment 2: Identification with RFC. We con-
duct this experiment using the same setting as in ex-
periment 1. However, instead of relying on the softmax
classifier, we use the sequence embeddings generated by
the RNN model to construct an RFC classifier with 300
trees grown to the maximum extent. We construct the
RFC classifiers using the sequence embeddings of the
same training dataset used for training the RNN-based
models. The RFC models are then evaluated using the
sequence embeddings of the test dataset. Similar to ex-
periment 1, two different initial representations meth-
ods, namely, word2vec and TF-IDF, are used in this
experiment. Using word2vec as the initial code repre-
sentation, Figure 11 shows the identification accuracy
of RFC over word2vec-based sequence embeddings gen-
erated with different RNN types. Figure 11(a) shows the
accuracy of different RNN types when the least number
of samples per author is six. Using sequence embeddings
generated by LSTM enabled the best accuracy, regard-
less of the sample size, as it achieves 84.64% accuracy
for 843 programmers. The improvement in accuracy be-
comes clearer as the minimum lines per sample exceed
ten lines of code to reach 90.61% for the available 608
programmers. Figure 11(b) shows an accuracy of 92.12%
for 479 programmers when the number of samples is at
least ten with at least ten lines per sample. This accu-
racy increases to 92.87% for 346 programmers when the
number of samples is doubled as shown in Figure 11(c).
A similar improvement of accuracy is achieved when we
use more than 30 samples per author to reach 94.4% as
shown in Figure 11(d).

When using TF-IDF as our initial representation,
the sequence embeddings seem to capture more distinc-
tive features of the code samples. This can be shown
by the obvious improvement of the obtained results il-
lustrated in Figure 12. In Figure 12(a), LSTM-based
sequence embeddings with RFC achieve 86.84% for
843 programmers. Compared to results achieved using
word2vec-based sequence embeddings, the improvement
in accuracy is 2.2% (= 86.84−84.64). When considering

the minimum number of lines per sample, the accuracy
reaches 91.24% with samples of more than ten lines. Fig-
ure 12(b) shows an accuracy of 92.82% when the num-
ber of samples is at least ten and with at least ten lines
per sample. This accuracy increases to 95.12% when the
number of samples is doubled as shown in Figure 12(c).
The TF-IDF-based method seems to generate more ro-
bust sequence embedding than the ones generated by
the word2vec-based method. This can be clearly seen in
Figure 12(d) as it reaches to an accuracy of 96.14% when
considering at least 30 samples per author since the ac-
curacy improvement reaches 1.74% (= 96.14− 94.4).
Key Insight. The reported results of this experiment
show the impact of using robust classifier such as the
RFC. For instance, the improvement of the achieved ac-
curacy in identifying programmers for word2vec-based
sequence embeddings using RFC compared to the soft-
max classifier is 16.28% (= 94.4− 78.12) when consider-
ing programmers with at least 30 samples of minimum
ten lines of code. Similarly, the improvement of achieved
accuracy in identifying programmers for TF-IDF-based
sequence embeddings using RFC compared to softmax
classifier is 12.69% (= 96.14 − 83.45) when considering
authors with at least 30 samples of minimum ten lines.

4.4 End-To-End Identification

In this experiment, we make use of the observations
learned from previous experiments to design an overall
system evaluation of Multi-χ. The main purpose of this
evaluation is to demonstrate Multi-χ’s effectiveness in
general rather than its accuracy on an individual task.
For this evaluation, Multi-χ should operate through the
five stages, code segmentation, code representation, seg-
ment authorship verification, segment integration and
finally authorship identification. The final end-to-end
system evaluation depends on the performance of all in-
corporated stages, e.g., the segment verification plays
an important role in segment integration that itself in-
fluences the identification.
Experiment Settings. The setting of the experiment
in a distinct stage is outlined as follows:

1. Code Segmentation: we use a one-line window.
2. Code Representation: firstly, code segments are rep-

resented as a sequence of 128-dimensional word2vec
representations for the authorship verification task,
where the sequence length equals to Linecommon.
Secondly, the integrated code segments, generated by
accumulating positively verified code segments of a
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Fig. 11. Accuracy of authorship identification for authors with at least specific number of samples with different sample sizes repre-
sented using word2vec. The results are achieved by a RFC constructed using sequence embeddings generated from a trained two-layers
bi-LSTM model with 512 units in each layer.
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Fig. 12. Accuracy of authorship identification for authors with at least a specific number of samples with different sample sizes rep-
resented using TF-IDF. The results are achieved by RFC constructed using sequence embeddings generated from a trained two-layers
bi-LSTM model with 512 units in each layer.

programmer, are represented with the top-2,500 TF-
IDF features for the identification task.

3. Code Authorship Verification: we use a two-layer bi-
LSTM model with 64 hidden units for each layer.
The verification models are trained from scratch.

4. Code Segment Integration: using the verification
model, we go through the testing code files line by
line integrating segments in an incremental manner.

5. Code Authorship Identification: we use a two-layer
bi-LSTM with 512 units for each layer. The identifi-
cation models are trained from scratch using the in-
tegrated segments produced by the verification. The
identification models are fed with TF-IDF repre-
sentations of the integrated segments and generate
deeper representations of authorship attributions.
Using deep representations of integrated segments,
we construct RFC with 300 trees for identification.

Evaluation Metric. The traditional definition of accu-
racy, which corresponds to the exact prediction of tested
samples (guess-all authors per file), can be inefficient
in describing the level of correctness of our approach
in identifying the authors of a source-code file [23, 43].
Therefore, the evaluation of the overall system perfor-
mance can be calculated using a similar metric as the
example-based accuracy (EBA) used in [23], which cor-
responds to the average correctness of the author as-

signments per code file. Since our system uses a fine-
grained approach instead of a multi-labeled example,
we use the average sum of per-segment identification
accuracy and the author assignment accuracy for each
code file. We call this evaluation metric as Authorship
EBA (A-EBA), which we define as follows:

A-EBA = 1
2n

n∑
i=1

s_Ai + a_Ai

where, (1) s_Ai is the per-segment authorship identifi-
cation accuracy, defined as the proportion of correctly
attributed segments in all tested segments for the sam-
ple file i. (2) a_Ai is the authors per example accuracy,
defined as the proportion of correctly assigned authors
in the total number of authors of example i. (3) n is the
total number of tested code files. Using a_Ai or s_Ai

separately does not provide high confidence in the over-
all system predictions. For example, consider a file with
four segments and two authors; if three segments are
correctly attributed then s_Ai is 75%, and the a_Ai

can be either 50 or 100% depending on whether one or
two authors are identified resulting in A-EBA of 62.5%
or 87.5% for the two cases, respectively. Therefore, av-
eraging the two measures can provide a better under-
standing of the system performance.
Results. For a real-world scenario, we run the evalua-
tion on all code files in the testing set without altering or
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omitting little code contributions, i.e., removing authors
with few code segments. Therefore, we split the dataset
to 80% training set and 20% testing set, resulting in
21,286 sample files in the training set and 5,321 sample
files in the testing set. Since the code files are randomly
selected for the testing set, this might result in includ-
ing files written (partially or entirely) by programmers
who do not contribute to any sample in the training
set. We exclude those programmers since attempting to
identify them is an open-world problem, which is out of
the scope of this work. The splitting of the dataset re-
sulted in obtaining 617 programmers in the testing set,
and only 562 have appeared in the training set.

We run the evaluation ten times and report the av-
erage result. For 562 programmers, Multi-χ achieved an
A-EBA of 86.41% and an overall per segment author-
ship identification of 93.18% and authors per example
accuracy of 79.62%. Investigating the results further, we
found that most misattributed segments are less than
three lines of code. This misattribution of code segments
factored on the authors per example accuracy, as au-
thors with little contributions, e.g., one to three lines of
code, on a given code file are very difficult to be identi-
fied. Moreover, it also becomes more challenging when
the total number of contributions for an author is very
small, e.g., less than six segments of code in the training
data, which makes it hard for the classifier to learn dis-
tinct features for such an author. For example, in this
experiment, the testing files include 109 programmers
who have less than six samples in the training data.
However, the proposed fine-grained approach achieved
remarkable results with the utilization of term distribu-
tions and representations, deep learning, sequence em-
beddings, and ensemble classifiers.

5 Limitations
This work demonstrates that sufficient authorship at-
tributions can be extracted from the smallest piece of
code to enable accurate authorship identification. Nev-
ertheless, Multi-χ has several limitations concerning the
ground-truth data used in the evaluation, dealing with
binary code, and obfuscated code.
Ground-Truth Assumption. This work assumes au-
thorship of code lines based on the git-author [40] tool.
This means authorship is assigned to the Github com-
mitter of the project regardless of any consideration
of other authors who worked offline in the submitted
project. Thus, working with early commits of a project
might not always allow authentic authorship. The con-
tinuous improvements and the dynamics of open-source

projects enable the collaboration among authors and re-
duce the ramifications of ground-truth error. We chose
nine open source projects with 2,220 programmers, with
an average of 1,378 code lines per programmer.
Binary Code. Previous work [18] showed that a
pseudo-code generated from the decompilation process
of a binary can possess authorship traits of the bi-
nary program. The experiments were reported using a
dataset with a single author per program, which simpli-
fies the authorship assignment for the decompiled code.
However, assigning multiple authors for a piece of de-
compiled code is very challenging, and for the best of
our knowledge, there have been no previous attempts to
map multiple authors to decompiled pseudo-code. We
leave this investigation as future work.
Obfuscated Code. Previous work [1] showed that deep
learning representation enabled accurate code author-
ship identification for obfuscated code. Another work
by Brennan et al. [12] has studied adversarial stylome-
try to evaluate the performance of authorship identifica-
tion when adversaries attempt to evade identification by
hiding or impersonating another identity. We acknowl-
edge such a limitation, and leave studying the effects of
obfuscation or adversarial scenarios on identifying mul-
tiple authors of source code as future work.

6 Conclusion
We have proposed Multi-χ, a fine-grained approach for
multi-author identification from source codes incorpo-
rating several techniques: code representation, recurrent
neural networks, and ensemble classifiers. To the best of
our knowledge, our work is the first to attempt at iden-
tifying multiple authors of a single source file from a
real-world dataset collected in the wild (from Github),
and in identifying authors line-by-line in source code.
For the evaluation of Multi-χ, we have used a large scale
dataset including nine real-world open-source projects.
Multi-χ achieves an authorship example-based accuracy
of 86.41% and per-segment authorship identification of
93.18% for 562 programmers. Our results show that
programmers’ coding style is distinguishable even with
small fractions of codes, and it is possible to identify
multiple authors in single source code. We leave other
representation techniques of code terms for higher iden-
tification accuracy for future investigation.
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