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Abstract—Sampling of large social graphs is used for ad-
dressing infeasibility of measurements in large social graphs, or
for crawling graphs from online social network services where
accessing an entire social graph at once is often impossible.
Sampling algorithms aim at maintaining certain properties of
the original graphs in the sampled (or crawled) ones. Several
sampling algorithms, such as breadth-first search, standard
random walk, and Metropolis-Hastings random walk, among
others, are widely used in the literature for sampling graphs.
Some of these sampling algorithms are known for their bias,
mainly towards high degree nodes, while bias for other metrics
is not well-studied. In this paper we consider the bias of sampling
algorithms on the mixing time. We quantitatively show that some
existing sampling algorithms, even those which are unbiased to
the degree distribution, always produce biased estimation of the
mixing time of social graphs. We argue that bias in sampling
algorithms accepted in the literature is rather metric-dependent,
and a given sampling algorithm, while may work nicely and
unbiased to one property, may produce considerable amount of
bias in other properties.

Index Terms—Mixing Time, Social graphs, Biased estimation,
Sampling

I. INTRODUCTION

Measurement of online social networks is a quickly evolving
area of research, where there has been recent interest in
measuring and understanding simple and complex properties
of social structures alike [1], [33], [20], [16], [15], [14],
[13]. While measuring simple properties—such as degree
distribution, for instance—is easy to perform on large social
graphs that include tens of millions of nodes and billions
of edges [11], performing other relatively complex, yet of
interest, measurements for certain properties is quite chal-
lenging [27]. The challenge in performing such measurements
is inherent in the complexity of best-known algorithms to
compute these properties, requiring thousands of computation
hours for such large graphs. An example of an interesting
property is node betweenness, which is computed as the
number of shortest paths between any pair of nodes which
pass through a given node normalized by the total number of
shortest paths in the graph [4]. Computing the betweenness
for all nodes in a graph of n nodes requires computing all-
pairs shortest paths, which can be accomplished using Floyd-
Warshall algorithm in O(n3

) time complexity [29]. This time
complexity is pivotal to these algorithms’ infeasibility as the
size of social graphs grow moderately to millions of nodes.

Another interesting property of both theoretical and prac-
tical significance is the mixing time of social graphs. The
mixing time, the length of the random walk starting from

any node in the graph to achieve a certain statistical distance
from the stationary distribution of the Markov chain on the
graph, is bounded by a single parameter; the second largest
eigenvalue of the transition matrix representing the social
graph [31]. Computing the eigenvalues of a matrix can be
accomplished using Arnoldi/Lanczos iterative algorithms [12],
which run in O(n2

log n), pronouncing the process infeasible
for large graphs. Yet worse, more expensive computations that
include vector-matrix multiplications are required to describe
the rich pattern of mixing characteristics in social graphs [27],
[23], [26], [25]. For example, to compute how close is the
distribution of random a log n walk from the stationary dis-
tribution for all sources (nodes) in a graph, a straightforward
implementation has the time complexity of O(n3

log n).
From both examples, it is clear that running these algorithms

on large social graphs, which typically consist of millions of
nodes, to compute their properties is infeasible. To address
this infeasibility issue, sampling algorithms are often used
for extracting graphs that contain smaller sets of nodes and
edges from the original graph [27], and properties are feasibly
computed in the sampled graphs. Finally, conclusions are
made on properties in the original graph by observing these
properties in the sampled graphs.

Sampling algorithms are also used for crawling social
graphs from online social network services, where most pub-
licly available graphs are often samples of entire graphs of
such services [8]. In both cases; sampling to address feasibility
of measurements and sampling due to crawling, measurements
are only real reflections to properties in the sampled graphs.
Thus, such measurements cannot be directly used to make
firm conclusions on properties in the original graphs without
accounting for bias in sampling algorithms. Some of the
popular and widely used sampling algorithms include the
breadth-first search (BFS) [10], standard random walk based
(RW) [7], and the Metropolis-Hastings random walk based
(RWMH) sampling [7], among many others. In some of these
sampling algorithms, theoretical results are driven on the
amount of bias in the computed properties to that existing
in the original graph. This bias is marked as an “error” in the
measurement due to sampling, and can be used to correct the
quantified property in the original graph, when possible.

Unfortunately, our understanding of bias in sampling al-
gorithms is very limited to a few properties and sampling
algorithms. The most widely explored property, and bias in this
property due to sampling, is degree distribution. It has been
shown that sampling algorithms like BFS and RW are biased



towards high degree nodes, unlike RWMH which is unbiased
sampler of degree distribution [7]. Even a formal quantification
of bias in the degree distribution in social graphs due to the
BFS sampling—one of the simplest sampling algorithms—was
not possible until very recently [10].

Our limited understanding of bias in properties computed
for sampled social graphs to derive insights and firm conclu-
sions on properties in unsampled graphs motivates this work.
The property we consider in this paper is the mixing time, the
walk length on the social graph required to achieve a constant
distance from the a fixed distribution. We choose this property
for its practical significance, where the aforementioned prob-
lem of undermining effects of sampling on the property rises in
many contexts. We consider several sampling algorithms and
quantify the amount of bias in these algorithms when variating
several parameters.

1) Contributions: The contribution of this paper is a com-
parative study on the bias of sampling algorithms in estimating
the mixing time of social graphs. We consider several real-
world social graphs with different structures, and several
sampling algorithms and compare them according to their bias
introduced on the measured mixing time. We conclude with
several interesting remarks pointing out that, unlike degree
distribution that is easy to understand, and even possible to
formally model for the amount of bias introduced due to
sample, the bias on the mixing time due to sampling has
different patterns that are not captured in a single tendency.

2) Paper organization: The structure of the rest of this
paper is as follows. In section II we introduce the related
work on measurements and sampling. In section III we provide
preliminaries by reviewing random walk theory on graphs,
sampling algorithms, and the mixing time. In section IV we
report our methodology and results. In section V we outline
concluding remarks and future work.

II. RELATED WORK

We will present various sampling techniques in § III, while
here we discuss measurements-related work.
Social network measurement: is an evolving area which has
been recently explored intensively. Mislove et al. measured
several topological characteristics of large scale social net-
works [20]. Similar study on different graphs is conducted
by Ahn et al. in [1]. Community structure of social networks
is studied by Leskovec et al. [16]. By Leskovec et al. too,
evolution patterns of social graphs are studied in [15], [14]
and signed links inference is studied in [13]. Interaction graphs
and their measurement are studied in [33] and [34].
Graph mixing time: is interesting an interesting property
for different reasons. For example, it is used to quantify
the connectivity of graphs [31] since it is bounded by the
second largest eigenvalue which is used also for bounding the
conductance of the graph, a measure of graph connectivity.
Also, as a property the mixing time is used in a wide range
of applications, such as Sybil [5] defenses [32], [17], [35],
[36], [21], anonymous communication systems on social struc-
tures [28], [3], distributed computing [24], and routing [22].

Measuring the mixing time is explored in [27], though graphs
for which the mixing time is computed are mostly obtained
using the BFS-sampling method known for its bias. While
some of these measurement are performed on entire graphs
that include complete [1], or close to complete [20], social
structures, the majority of these measurements are performed
on samples obtained by running the BFS sampling algorithm,
which is known for its bias towards high degree nodes.

To our knowledge, we are the first to study and compare a
wide range of sampling techniques on estimating mixing time
on social networks. We aim to better understand the perfor-
mances and biases of various sampling techniques, which can
guide in selecting the best suitable sampling method given a
particular network.

III. PRELIMINARIES

For a simple, undirected, and unweighted graph G =

(V,E), where |V | = n and |E| = m, we define A as the
adjacency matrix where each entry aij in A is 1 if node vi
is adjacent to node vj in G and 0 otherwise. From A we
define the transition matrix P , where each entry pij in P is
defined as pij = 1/ deg(vi) if vj is connected to vi and 0

otherwise. A simple random walk on the graph G is a sequence
of vertices that begins at a node and ends at another node,
where transitions at each step follow the probability in P .
This is, pij describes the probability of moving from node
vi to node vj . At each time step, a node on the path of the
random walk decides to forward the random walk to one of
its neighbor uniformly at random.

A. The Mixing Time
Informally, a graph is said to be fast mixing if every random

walk on the graph converges to a “stationary distribution” after
t steps, where t is in the logarithmic order of n (i.e., O(log n)).
The stationary distribution for this graph is defined as an (1⇥

n)-probability distribution ⇡, where ⇡ = [deg(vi)/2m]

1⇥n.
Formally, for the same graph defined on n nodes, the mixing
time T parameterized by a statistical distance ✏ (also known
as total variation distance—which is in the reciprocal order of
n for a fast mixing graph) is defined as T (✏) = maxi min{t :
|⇡ � ⇡(i)P t

|1} < ✏, where ⇡ is the stationary distribution
above, ⇡(i) is the distribution when starting from node vi and
the P is the transition probability defined as in above, while
| · |1 is total variation distance, defined as 1

2

P
j |⇡(j)�⇡i

(j)|

between two distributions ⇡ and ⇡i. This definition here serves
the purpose of our measurement, and more formal definition
is provided in [27].

B. Sampling Algorithms
There is a wide range of sampling algorithms in the lit-

erature [6], [7], [30], [2], [9], which can be classified into
non-probability, equal probability, and non-equal probability
sampling algorithms [19]. The non-probability sampling in-
cludes breadth-first search (BFS) [10], snow ball sampling,
etc, where the probability of each sample being obtained is
unknown, thus this type of methods generally suffer from bias
issue. On the other hand, the equal probability sampling, e.g.,



Metropolis-Hastings random walk (RWMH) sampling and ran-
dom vertex sampling (RVS) has known and equal probability
of each sample being taken, whereas for non-equal probability
sampling, e.g., reweighting random walk sampling (RWRW)
sampling and random edge sampling (RES), the probability
of obtaining each sample is known but unequal. The known
sampling probabilities of equal and non-equal probability
sampling methods enable judicious designs of (asymptotically)
unbiased estimators for some graph properties, such as degree
distribution, label density, etc [30], [7]. However, it is still
unclear for the graph properties, such as mixing time, how
the (unbiased) estimator could be designed, and how much
bias got introduced by various sampling techniques.

In this paper, we take three representative sampling methods
from the above three categories, i.e., BFS, RWRW, RWMH,
performing the first systematic study on analyzing and elu-
cidating the biases of estimating mixing time, associated
with various sampling techniques. We briefly review these
algorithms below.

1) Breadth-First Search Sampling: BFS is one of the sim-
plest algorithms to consider for sampling. In BFS, a starting
node is marked as the root, and every neighboring node is
explored (at the same level). From that level, every node at the
next level is explored, and added to the sample in a breadth-
first fashion until the number of nodes explored by this method
is equal to the number of nodes required in the sample.

2) Random Walk Sampling: Using the (standard) random
walk defined at the beginning of this section one can sample
nodes in the graph as follows. Beginning by a starting node vs,
one create a long enough random walk that traverses nodes at
random according to the transition probabilities defined earlier.
If the current hop of the random walk is not traversed before,
the node is added to the set of traversed nodes. The walk is
continued until the number of nodes in the traversed set of
nodes equals the needed sample size, after which the graph is
constructed by establishing all links in the original graph that
connect these nodes in the sample.

3) Metropolis-Hastings Random Walk (RWMH) Sampling:
The RWMH (with a uniform stationary distribution over
all nodes in the graph) is a special type of random walk:
after the current node vi randomly selects a neighbor vj , it
makes the move with probability min(1, deg(vi)/ deg(vj)). In
other words, moving towards a lower-degree node is always
accepted, while moving towards a higher-degree node may or
may not be rejected. RWMH corrects degree bias, and the re-
sulting transition probability from node vi to node vj becomes
pij = min(

1
deg(vi)

, 1
deg(vj)

) for vj ⇠ vi, pij = 1 �

P
k 6=i pik

for vj = vi, and pij = 0 otherwise.

IV. RESULTS AND DISCUSSIONS

In this section we demonstrate the impact of graph sam-
pling, using the three sampling algorithms described earlier,
on its mixing time. Before detailing our method used for
conducting these measurements, we describe the datasets used
in this study.

TABLE I
DATASETS USED IN THE MEASUREMENTS AND THEIR SIZE.

Dataset # of Nodes # of Edges

Physics 1 [14] 4, 158 13, 422
Wiki-vote [13] 7, 066 100, 736
Physics 3 [14] 8, 638 24, 806
Physics 2 [14] 11, 204 117, 619
DBLP [18] 614, 981 1, 155, 086
Youtube [20] 1, 134, 890 2, 987, 624
Flickr [20] 1, 624, 913 15, 476, 464
Facebook [34] 3, 097, 165 23, 667, 394

A. Datasets

The datasets used in our measurement are previously used
in [27] and are for social and information networks. The
datasets are shown in Table I with their basic size properties
(size). For further details on these datasets, and their charac-
teristics, see [27], or the papers where these datasets were first
introduced and used. Worth noting is that the DBLP dataset
is as of 2004. Some of these graphs are originally directed,
where direction is omitted to simplify measurements and agree
with the previous measurements in [27] and how these graphs
are used in the literature. Investigating how directionality of
edges impact the mixing time is a separate issue worth separate
investigation, which we studied in [26].

B. Methodology

A two-process methodology is summarized as follows
1) Sampling Process: Given a dataset, we randomly pick

100 nodes, starting from each of which we initiate each of the
three sampling algorithms (i.e. BFS, RW and RWMH), and
aggregate the mixing statistics over these starting nodes at the
end. For each starting node and each sampler, we try various
levels of sampling coverage, corresponding to several samples
size: from 0.001 to 0.99 proportion of nodes in the original
graph (for large graphs we only sample up to the 0.01 level for
feasibility reasons). For each starting node, on each sampler
and each level of coverage, we sample a subgraph.

2) Mixing Process: Given a sampled subgraph, we compute
its mixing time. By definition one should initiate a random
walk from every node in the sampled subgraph in order to
accurately calculate the mixing time. Again for feasibility
reasons we pick 100 random nodes and initiate each of the two
random walk mixing algorithms (i.e. RW and RWMH) from
each of the nodes, by iteratively multiplying the corresponding
transition probability matrix, up to a random walk length of
500 steps. Our calculation may underestimate the maximum
of the mixing times, but should accurately reflect the mean
value given that we have sufficient repeats. We calculate the
maximum and the mean of the total variation distance for each
random walk length, and aggregate them over all starting nodes
in the sampling process in the end. For example, by referring
to section III-A, we use the definition of the mixing time
and using the standard random walk computation (for both
the transition probability explained therein and the bounding
stationary distribution), we perform the process above so as
to compute ✏ for each random walk starting from each of the
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Fig. 1. Average Mixing Times for Different “Sampler+Mixer” Combination of Each Dataset. The number in each subfigure title is the sampling coverage;
“BFS+RW”, for instance, denotes the combination of BFS sampler and RW mixer.
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Fig. 2. Maximum Mixing Time Estimations for Different Samplers on Various Coverage Levels of Various Datasets. The dataset and the sampler are denoted
in each subfigure title. The mixing algorithm is fixed to RW for all cases.

different sources. We repeat this up to the final length of the
random walk. Similarly, when using the RWMH algorithm,
we only change the stationary distribution (which is uniform
over all nodes) and the transition probability as defined earlier.

C. Sampling-Mixing Algorithms Combination
Figure 1 shows the average mixing time for a certain level of

sampling coverage (annotated in each subfigure title) on each
of the eight datasets shown in Table I, for all combinations of
samplers and mixing algorithms. The chosen coverage levels
for the four large datasets (i.e. DBLP, YouTube, Facebook and

Flickr) are the maximum levels that we actually sampled in
our experiments. This figure has the following implications.

First, for the same mixing algorithm (either RW or RWMH),
the BFS sampler yields the fastest mixing subgraph (faster than
the original graph); and RWMH yields the slowest mixing
sample. This qualitative relationship is intuitive: BFS expands
slowest and obtains a subgraph biased towards high-degree
nodes on which a random walker mixes fastest, while random
walk samplers have higher chances of visiting far-away nodes
and form a relatively sparse subgraph; compared with the
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(h) Facebook (RW)
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(i) Phy2 (RWMH)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

T
o

ta
l 
v
a
ri

a
ti

o
n

 d
is

ta
n

c
e

Random walk length

0.001

0.005

0.010

0.050

0.100

0.300

(j) DBLP (RWMH)
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(k) YouTube (RWMH)
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Fig. 3. Average Mixing Time for Different Samplers on Various Coverage Levels of Four Datasets. The dataset and the sampler are denoted in each subfigure
title. The mixing algorithm is fixed to RW.

standard RW, RWMH has corrected the bias towards high-
degree nodes and therefore yields slower mixing rates. It
is worth noting that the RWMH sampler often results in
subgraphs mixing slower than the original graph.

Second, for the same sampler (i.e. BFS, RW or RWMH),
the standard RW mixing algorithm yields higher mixing rates
than the RWMH mixing algorithm.

D. Effects of Sampling Coverage
Figure 3 shows the joint effects of the samplers and the

sampling coverage on the average mixing time. We run all
three samplers on all feasible levels of sampling coverage on
each dataset, fix the mixing algorithm as the standard RW, and
report the following findings.

First, from the “Phy2 (RWMH)” subgraph we observe that
the RWMH sampler, which is known to be unbiased to the
degree distribution, always produces biased estimation of the
mixing time, meaning that the mixing time is not associated
with the size of the graph for which it is measured.

Second, when the standard random walk is used as the
mixing algorithm, BFS operates as better sampler than the
RW and RWMH, where BFS would produce the least amount
of bias among the three. This can be seen via comparing the
three Phy2 subfigures in Figure 3. Also, if we scan across
all twelve subfigures, we will see that the combination of the
BFS sampler and the RW mixing algorithm tends to yield the
least amount of deviations of mixing time on various levels
of sampling coverage. This phenomenon is confirmed in the
other four datasets, which we omit for the lack of space.

Third, for large-size graphs such as DBLP, YouTube and
Facebook (as well as Flickr not shown here), sampled sub-
graph tends to mix faster as the sampling coverage goes up.
However, for small-size graphs such as Phy2 (as well as
Phy1/3 and Wiki that are not shown here), a clear monotonic
relationship between the mixing rate and the sampling cover-
age seems not to exist. More precisely, the BFS and the RW
tend to sample subgraphs that mix slower when the coverage
goes up, contrast to the findings for large-size graphs; while the
RWMH sampler behaves in the reverse way. In each case, the
ultimate distribution reached as the sample covers the entire
graph is the mixing time of the entire graph, though smaller,
and originally slower mixing (as reported in [27]) graphs tend
to have inconsistent correlation with sample size. One possible
explanation for this behavior is the difference in the underlying
structure in these graphs, and the size of samples: where very
small size of samples from original sparse graphs is obtained in
the smaller graphs, relatively larger samples are obtained from
original denser graphs in the second case. The larger sample
allows for capturing the inherent property of the original graph.
Quantitatively verifying this possibility is left to future work.
E. Average versus Maximum Mixing Time

Figure 2 matches Figure 3, but instead it shows the esti-
mations of the maximum mixing time, which by definition is
the “mixing time” of the entire graph. By comparing the two
figures, we can make the following findings. First, the “unbi-
ased” RWMH sampler still produces biased estimation of the
maximum mixing time. Second, the relative orders of mixing



rates in the corresponding subfigures may not persist. In other
words, the mixing times in different subfigures have different
patterns that are not captured in a single tendency. Third, since
we only pick 100 nodes as the starting points of the random
walk for mixing a sampled subgraph, it may underestimate the
actual mixing time. Fourth, some curves in some subfigures
do not look “smooth”. It is because we take the maximum
of the mixing times over all 100 different sampled subgraphs,
and therefore smoothness is not guaranteed.

V. CONCLUSION AND FUTURE WORK

In this paper we comparatively study the bias of three
sampling algorithms—the breadth first search, standard ran-
dom walk, and Metropolis-Hastings random walk sampling—
in estimating the mixing time of real-world social graphs.
We quantitatively show that sampling algorithms which are
unbiased to some graph properties (e.g. degree distribution)
may still produce biased estimation of the mixing time.
Accordingly, we argue that the bias in the sampling algorithms
accepted in the literature is rather metric-dependent. In other
words, a given sampling algorithm, while may work nicely
and unbiased to one property, may produce large amount of
bias in other properties. Unlike degree distribution that is easy
to understand and model formally for the amount of bias
introduced due to sampling, the bias due sampling on the
mixing time has different patterns that are not captured in
a single tendency. One consequence of these findings is that
earlier work on measuring the mixing time of social graphs
by sampling them [27] might fall short in not representing the
exact (or good approximate of) mixing pattern in the original
unsampled graph. Furthermore, findings of certain applications
that use the mixing time as their basic operation property,
while sampling their operation graphs, are now questionable
and worth further investigation.

This study is entirely measurement-based. In the future, we
will look at theorizing the bias in these sampling algorithms for
the estimated mixing time over sample in relations with the
original graph. While this would be a nontrivial task where
potentials for finding firm results are slim, recent work like
that in [10]—which considered the bias of BFS on the degree
distribution—would be helpful as a starting point.
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