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Abstract—Energy is the most precious resource in wireless sen-
sor networks. To ensure sustainable operations, wireless sensor
systems need to harvest energy from environments. The time-
varying environmental energy results in the dynamic change
of the system’s available energy. Therefore, how to dynamically
schedule tasks to match the time-varying energy is a challenging
problem. In contrast to traditional computing-oriented schedul-
ing methods that focus on reducing computational energy con-
sumption and meeting the tasks’ deadlines, we present DEOS, a
dynamic energy-oriented scheduling method, which treats energy
as a first-class schedulable resource and dynamically schedules
tasks based on the tasks’ energy consumption and the system’s
real-time available energy. We extensively evaluate our system
in indoor and outdoor settings. Results indicate that DEOS is
extremely lightweight (e.g., energy consumption overhead in the
worst case is only 0.039%) and effectively schedules tasks to
utilize the dynamically available energy.

I. INTRODUCTION

To ensure sustainable operations of wireless sensor net-

works, environmental energy harvesting has been regarded

as the right solution for long-term applications. However, the

harvested energy is usually not sufficient to allow the sensor

nodes to keep active all the time. Therefore, the bottleneck

in sustainable wireless sensor networks is energy instead of

computing and communication capabilities. What is worse is

that the availability of energy in a sustainable sensor network

is intermittent and varies over time. Thus it becomes important

to shift the focus from the constraint of computation and

communication to the energy constraint and explore a method,

which dynamically schedules tasks based on energy.

In this paper, we propose dynamic energy-oriented schedul-

ing - a method that allocates tasks to resources based on

the system’s instantaneous available energy and the tasks’

energy consumption. The novel features are (i) the ability

to decompose and recombine tasks to eliminate redundant

operations, and (ii) the concurrent execution to simultaneously

utilize multiple resources (e.g., sensing and communication).

In addition, admission control is applied to ensure the execu-

tion of high priority tasks when there is insufficient energy.

It is a challenging task to build an energy efficient and light

weight scheduling method because the scheduling operation

also consumes energy. This calls for a design that reduces

scheduler overhead. It should be noted that dynamic energy-

oriented scheduling achieves a balance between the system’s

available energy and the energy consumption of tasks in real

time. Such a realtime balance makes our work on energy-

oriented scheduling unique and novel. More specifically, our

major contributions are as follows:

• To the best of our knowledge, this is the first in-depth work

to investigate optimal dynamic energy-oriented multiple tasks

allocations with a time-varying and limited energy constraint.

• We have designed and implemented the first dynamic

energy-oriented scheduler for efficiently allocating tasks in

realtime based on the available energy and the tasks’ (i)

priorities, (ii) values, and (iii) energy consumption.

• We evaluate our design extensively in multiple real-world

testbeds and simulations. The results indicate that our system

effectively allocates tasks to efficiently utilize the realtime

available energy.

The rest of the paper is organized as follows: Section II

describes the motivation behind an energy-oriented design

for sustainable sensor networks. Section III introduces our

basic design, followed by an advanced design in Section IV.

The system’s performance is evaluated by conducting real-

world experiments and simulation (Section V). Related work

is discussed in Section VI. Section VII concludes the paper.

II. MOTIVATION

The motivation of this work comes from our experience of

deploying energy-harvesting sustainable sensor networks. In

such networks, the harvested environmental energy is limited

and cannot afford a sensor node to stay active all the time.

Thus energy is more important than other resources, such as

computing capacity. This section identifies the need for a dy-

namic energy-oriented scheduler (DEOS) design and describes

the unique features of DEOS design.

A. The Need for a DEOS Design

In traditional computing-oriented scheduling design that

focuses on reducing the computational energy consumption

and meeting the tasks’ deadlines (the time before which the

tasks have to be executed), the computing capability is usually

the limiting resource. The main design goal is to maximize the

utilization of computing power. However, in sustainable sensor

networks, ambient energy (e.g., solar or wind) is normally

not sufficient to sustain continuous active operation of sensor

nodes in the long run [1], [2]. From our empirical measurement

results [3], even on a sunny day, the total energy harvested at

an energy-harvesting sensor node (e.g., Twin-Star node [4])

can only allow the node to work at 100% duty cycle for 6.37

hours. The limited available energy is the main factor that

prohibits a node from fully utilizing its hardware resources

(such as computing and sensing). Energy-oriented design aims
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Fig. 2. Comparison among Three Different Scheduling Methods

to optimize energy utilization, which results in system-wide

optimal performance under a limited energy constraint.

Moreover, due to the dynamic change of environmental

energy in sustainable sensor networks, the actual available

energy is intermittent and varies over time. Figure 1 shows

the harvested environmental energy and the available energy

suggested by our hardware platform over a period of 2 days

in an outdoor environment. If we use a computing-oriented

design which schedules tasks based on available CPU capacity,

the system runs out of power when little energy is available.

Due to these unique features of sustainable sensor networks,

it is necessary to design a resource scheduler that treats energy

as a first-class schedulable resource and dynamically adjust

the execution of tasks according to the intermittent and time-

varying available energy.

B. Unique Features of the DEOS Design

Besides dynamically adjusting the execution of tasks based

on the available energy, the DEOS design exhibits two unique

features. The first feature is to consider the sensor node as a

single system and to aggregate the tasks on other components

(e.g., communication) besides CPU. By doing this, a sys-

tem running the energy-oriented scheduler can further reduce

redundant activities on other components and consume less

energy than one running the computing-oriented schedulers.

As an example, Figure 2 shows a typical sensing application

in which the CPU triggers the sensor to sense the data, and

then triggers the radio to send the data back to the base station.

By separating CPU sensing activity from transmission activity

and combining the transmission activity with its successor’s

sensing activity, a traditional computing-oriented scheduler

(e.g., [5] and [6]) minimizes cumulative CPU idle time (shown

in Figure 2(b)). However, the cumulative CPU sleep time

of the computing-oriented scheduler is still smaller than that

of an energy-oriented scheduler (shown in Figure 2(c)). This

is because the energy-oriented scheduler not only aggregates

CPU activities but also combines communication tasks to

minimize redundant interactions between CPU and commu-

nication component.

DEOS’s second unique feature is concurrent execution.

Most hardware platforms allow concurrent activities of differ-

ent components. As shown in Figure 2(c), DEOS concurrently
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allocates sensing and communication activities to further re-

duce CPU idle time and increase sleep time.

To confirm this empirically, we conducted a series of

experiments by running the above sensing application with

three different scheduling methods on a MICAz mote every

20 seconds for 72 hours. Figure 3 shows the cumulative energy

consumption of these methods. Since the sensor node sleeps

most of the time, the energy consumption of the CPU is

low. Therefore, compared with the original task execution, the

computing-oriented scheduler only reduces total energy con-

sumption by 9.61%. In contrast, the energy-oriented scheduler

reduces total energy consumption by 29.87%.

III. BASIC DESIGN

This section introduces the basic design of DEOS. The

objective of DEOS is to dynamically optimize system perfor-

mance based on the intermittent and time-varying available

energy. Since the execution of a scheduler also consumes

energy, the scheduler should be simple and lightweight.

A. Design Overview

As illustrated in Figure 4, DEOS consists of four phases:

1) Decomposition: The energy-oriented scheduler takes all

tasks as inputs and decomposes them into subtasks only if

some of the subtasks can be combined together to save energy.

For example, in Figure 2(a), since the transmission activities

can be combined with each other, the original task can be

decomposed into two subtasks: sensing and transmission. We

note that unlike the traditional definition of a task, which

treats activities (e.g., sensing and transmission) separately,

here a single task corresponds to a logically meaningful and

complete data flow. As an example, in Figure 2(a), sensing and

transmission activities are traditionally defined as two separate

tasks. Here, the whole sensing and transmission data flow
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Fig. 4. Design Overview of Dynamic Energy-Oriented Scheduler

is treated as a single task, which starts with CPU activities,

followed by sensing activities at the sensor component, then

transmission activities at the radio component, and finally

ends with CPU activities that handle the success of the radio

transmission. The reason why we treat a complete data flow

as a single task is to efficiently utilize energy. In the above

example, after obtaining the sensing data, if there is insufficient

energy to transmit the data on time, then the data is useless and

the energy used to conduct the sensing operation is logically

wasted.

2) Combination: To save energy, subtasks are combined

using two rules: (i) eliminating redundant interactions among

hardware components (e.g., CPU and radio), and (ii) allowing

concurrent activities of different components. These combined

subtasks and the rest of the subtasks from the original task

compose a new task.

3) Admission Control: Although subtasks can be combined

to save energy, the available energy may still not suffice to

schedule all the tasks in the system. Before continuing, the

scheduler performs a schedulability test and selects the tasks

to execute based on (i) task priority, (ii) the available energy,

and (iii) the energy consumption of the tasks.

4) Optimization: The scheduler maximizes the total number

of instances a task is executed based on (i) the extra available

energy, (ii) the required number of executions of each task,

and (iii) the energy consumption of each task.

Since most tasks in sensor networks are periodic, we use T
to denote the least common time period of these tasks. DEOS

is invoked at the beginning of each time interval T based

on the available energy. Detailed designs are described in the

following subsections.

B. General Model

This section introduces the general model used in the design

of the scheduler. Since the available energy is intermittent,

without loss of generality, we assume that within a time

interval T the available energy is EA(T ). How to predict

the amount of available energy is out of the scope of this

paper. Our energy-oriented scheduling design is compatible

with energy prediction algorithms in the literature [7], [3],

[8], [1].

Assume there are n tasks, labeled τ1, · · · , τn. Task τi is

characterized by the 4-tuple (Nimin
, Nimax

, Pi, Vi) where:

• Nimin
represents the minimum number of instances of τi

that need to be executed during T in order to prevent system
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Fig. 5. Example of Task Decomposition and Combination

performance from falling below some threshold (e.g., the

confidence of the sensing data is below a user specified value).

• Nimax
denotes the desirable number of instances of τi to be

executed within T , as specified by the designers.

• Pi is the priority of τi (the larger Pi the lower the priority).

• Vi is the value of τi (the larger Vi the more valuable τi is).

All task attributes are integer valued and are assigned by

the user ahead of time based on application requirements.

We note that a higher priority task does not indicate that

the task has a higher value. For example, a flash write task

consumes 0.127µJ energy per byte, which is less than the

energy consumed by a radio transmission task (1.8µJ energy

per byte) [9]. For some applications (e.g., habitat monitoring),

each piece of data is valuable and the data can be either stored

in the node’s local flash memory or sent to base station via

radio. The flash write task can store more data than the radio

transmission task can send using the same amount of energy.

Therefore, the value of the flash write task is larger than that

of the radio transmission task. However, in some applications

(e.g., fire detection), the timely delivery of fresh sensor data

is more important, thus the radio transmission task has higher

priority than the flash write task.

C. Decomposition and Combination

Based on the general model built in Section III-B, we

now introduce the decomposition and combination processes.

Before describing them, we introduce the following definition:

Definition 3.1 Decomposable and Combinable Task: A task

is a decomposable and combinable task if it can be divided

into subtasks and some of its subtasks can be aggregated or

concurrently executed to save energy.

As an example, Figure 5(a) shows two decomposable tasks

τ1 (SensingToRadio) and τ2 (FlashToRadio). These tasks can

be decomposed into subtasks (i.e., τ1,1, τ1,2, τ2,1, and τ2,2
as shown in Figure 5(b)). Radio transmission subtasks τ1,2
and τ2,2 can be combined into new subtasks τ̃1,3. Similarly,

multiple instances of flash reading subtask can be combined.

Moreover, the combination function schedules the concurrent

execution of sensing and flash reading activities. Since most
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applications require periodic sensing, instances of the sens-

ing subtask cannot be combined. After decomposition and

combination, combined subtasks (i.e., τ̃1,2 and τ̃1,3) and an

uncombined subtask (i.e., τ̃1,1) together form a new task τ̃1.

In general, the size of a new task τ̃i is denoted as S̃i and

equals the maximum number of instances of the original sub-

tasks that can be combined into a new single instance of task.

If the new task contains m original tasks (τ1, · · · , τm) and

the number of instance of these original tasks is N1, · · · , Nm,

then the total number of instances of the new task τ̃i is

Ñi =

∑m
l=1

Nl

S̃i

(1)

The minimum number of instances of τ̃i that need to be

executed during T is

Ñimin
= ⌈

∑m

l=1
Nlmin

S̃i

⌉ (2)

The desirable number of instances of τ̃i to be executed

within T is

Ñimax
= ⌊

∑m

l=1
Nlmax

S̃i

⌋ (3)

The priority of τ̃i is

P̃i = max{P1, · · · , Pm} (4)

The value of τ̃i is

Ṽi =

∑m

l=1
Vl ·Nl

Ñi

(5)

As an example, in Figure 5, the total numbers of instances

of the original tasks τ1 and τ2 are both N1, and the size of the

newly formed task τ̃1 is S̃1 = 4. Based on Equation (1), the

total number of instance of τ̃1 is Ñ1 = (N1+N1)/4 = N1/2.

The minimum number and desirable number of instances of τ̃1
to be executed within T are Ñ1min

= ⌈(N1min
+ N2min

)/S̃1⌉
and Ñ1max

= ⌊(N1max
+N2max

)/S̃1⌋, respectively. The priority

and value of τ̃1 are P̃1 = max{P1, P2} and Ṽ1 = (V1 + V2) ·
N1/Ñ1, respectively.

Decomposition and combination can be done with the

assistance of an energy-aware programming language (such

as Eon [10]). For the sake of simplicity and consistency, we

use τ̃i (where i ∈ {1, 2, · · · , n}) to denote the task after the

decomposition and combination process. If a task τj is not a

decomposable and combinable task, then τ̃j and τj represent

the same task. The energy consumed by τ̃i is denoted as Ẽi,

which is the energy consumption of a single instance of the

task τ̃i. Ẽi can be calculated either online or off-line by using

the method introduced in Quanto [11].

D. Admission Control

Due to limited available energy, it may not always be

possible to execute all tasks. Moreover it may not be possible

to determine whether or not there is sufficient energy to

execute a collection of tasks until after the decomposition and

combination phases. Therefore, admission control is invoked

after the task combination phase. From the original task set, the

Algorithm 1: Highest Priority First

Input : ∀i ∈ {1, · · · , n},
Combined Task Set Γ1,

Minimum Energy Utilization Uimin

Output: Schedulable Task Set Γ2

1 Initialization: Γ2 ← φ, Total Utilization U ← 0 ;

2 while Γ1 6= φ do

3 Select the highest priority task τ̃j from Γ1 ;

4 U ← U + Ujmin
;

5 if U ≤ 1 then

6 Γ2 ← Γ2 + {τ̃j} ;

7 Γ1 ← Γ1 − {τ̃j} ;

8 else

9 break ;

admission controller selects the tasks to execute based on their

priorities and energy utilization, which is defined as follows:

Definition 3.2 Energy Utilization: The energy utilization of

task τ̃i is the ratio of energy spent in the execution of τ̃i to

the total available energy during the time interval T .

It is

Ui =
Ñi · Ẽi

EA(T )
(6)

Here EA(T ) is the total energy available during T . To

reduce energy consumption, tasks executed by wireless sensor

nodes are placed in a low duty cycle. Here, duty cycle is

defined as follows:

Definition 3.3 Duty Cycle: Duty cycle is the fraction of time

that any component of a system is in an active state during

the time interval T .

Here, the system is in an “active” state whenever any

resource, such as CPU, radio, or memory, is active. For

example, if a system’s CPU is active for 3 seconds and then its

radio is active for 2 seconds during a 100 seconds interval, this

system’s duty cycle is 5%. In another case, if a system’s CPU

is active for 3 seconds and its radio is active for 2 seconds at

the same time, then this system’s duty cycle is 3% (due to the

concurrent execution). Since sensor nodes can only execute

low duty-cycle tasks with limited environmental energy, we

define the low duty-cycle task set as follows:

Definition 3.4 Low Duty-Cycle Task Set: A low duty-cycle

task set is a set of tasks for which the sum of their duty cycles

is less than 1.

Since the total duty cycle of the tasks is less than 1, these

tasks can be completed during the time interval T if the system

has sufficient energy. Definition 3.4 ensures tasks belonging to

the low duty-cycle task set can be scheduled without missing

their deadlines. However these tasks may not be schedulable

due to the energy constraint. In order to efficiently use the

precious available energy, the Highest Priority First algorithm

(Algorithm 1) is used to select tasks in the admission control

stage. The inputs of the algorithm are (i) the combined tasks,
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and (ii) the corresponding tasks’ minimum energy utilization

Uimin
which can be calculated as follows

Uimin
=

Ñimin
· Ẽi

EA(T )
(7)

The output of the algorithm is the task set Γ2, which is

schedulable based on the available energy at the current time

interval T . In the initialization stage (line 1), the task set

Γ2 is empty and the total energy utilization U is 0. Then

the algorithm selects the highest priority task τ̃j from the

combined task set Γ1 and calculates the total energy utilization

U (lines 3 and 4). If U is not greater than 1, the algorithm

adds τ̃j to the task set Γ2 and removes τ̃j from the combined

task set Γ1 (lines 5 to 7). The above process is repeated until

the combined task set Γ1 is empty or U is larger than 1.

Since there is only a single loop in the algorithm and the

maximum number of iterations is n, the time complexity of

this algorithm is O(n). Without loss of generality, we assume

that k (where k ≤ n) tasks are selected by the Highest Priority

First algorithm. The schedulability of a task set is ensured

using the following theorem:

Theorem 3.5: Tasks selected by the Highest Priority First

algorithm is schedulable if and only if

U =

k∑

i=1

Ui ≤ 1; i ∈ {1, · · · , k} (8)

Where U is the total energy utilization of the system during

the time interval T .

Proof: (Only if.) We show that tasks cannot be scheduled if

U > 1. The total demand of energy needed by the selected

tasks (τ̃1, τ̃2, · · · , τ̃k) in T can be calculated as

k∑

i=1

Ui · EA(T ) = U ·EA(T )

If U > 1, then U · EA(T ) > EA(T ) which indicates that the

total demand requested by these tasks exceeds the available

energy EA(T ). Therefore, these tasks cannot be scheduled.

(If.) We show sufficiency through contradiction. Assume that

the condition U ≤ 1 is satisfied, however, the selected tasks

are still not schedulable. Let τ̃m be the first task that cannot be

scheduled by using the Highest Priority First algorithm due to

insufficient energy and all the other tasks (τ̃1, τ̃2, · · · , τ̃m−1)
can be scheduled. Then the total demand of energy requested

by the tasks (τ̃1, τ̃2, · · · , τ̃m) is
∑m

i=1
Ui · EA(T ). Since τ̃m

cannot be scheduled, we get the following inequality condition

EA(T ) <

m∑

i=1

Ui ·EA(T ) (9)

On the other hand, the task set {τ̃1, τ̃2, · · · , τ̃m} is a subset

of the selected task set {τ̃1, τ̃2, · · · , τ̃k}. Therefore, we get the

following inequality condition

m∑

i=1

Ui ·EA(T ) ≤
k∑

i=1

Ui ·EA(T ) = U ·EA(T ) (10)

From (9) and (10), we get EA(T ) < U · EA(T ). That is

equivalent to U > 1, which is a contradiction. ✷

These selected tasks τ̃i (where i ∈ {1, · · · , k}) are guar-

anteed to be executed at least Ñimin
times. Once all tasks

have been executed Ñimin
times, there may be extra available

energy, which is not sufficient to schedule a new task but can

be used to increase the number of times the selected tasks

are executed. This extra available energy can be calculated as

follows

EE(T ) = EA(T )−

k∑

i=1

Ñimin
· Ẽi

S̃i

(11)

Therefore we need an algorithm to choose additional task

copies to maximize the total value of the tasks with an

energy constraint. We note that there is an optimization trade-

off between priorities and values of tasks. The admission

control selects the tasks with higher priorities. After admission

control, the selected tasks are ensured to be executed for Ñimin

times, which meet the application’s requirement. Therefore,

maximizing the total value of selected tasks based on the extra

available energy is more important.

E. Task Quantity Optimization

The rationale behind the task quantity optimization is to

maximize the value of selected tasks based on (i) the quantity

of each task, (ii) the values of these tasks, and (iii) the extra

available energy. The problem can be formulated as

maximize

k∑

i=1

N ′

i · Ṽi

subject to 0 ≤ N ′

i ≤ (Ñimax
− Ñimin

) (12)
k∑

i=1

N ′

i · Ẽi ≤ EE(T ) (13)

Here N ′

i is the number of additional executions of task τ̃i.
Constraint (12) ensures that the number of copies of every

selected task is less than Ñimax
. Constraint (13) specifies

that the total energy consumption of these selected tasks is

less than the extra available energy EE(T ). This corresponds

to the Bounded Knapsack Problem, which can be solved

using dynamic programming. We use the algorithm proposed

in [12], which has running time of O(kEE(T )). For energy

constrained sensor nodes, the total number of task types is

limited, thus k is typically small. Since the extra available

energy (EE(T )) is not sufficient to schedule a new type of

task, the value of EE(T ) is also small. Therefore, the time

complexity of the algorithm is low, which is corroborated by

our measurements of the whole DEOS method’s overhead in

Section V.

After task quantity optimization, the number of copies of

task τ̃i selected by the scheduler can be calculated as follows

Ni =

{
Ñimin

+N ′

i , i ∈ {1, · · · , k}
0 , i ∈ {k + 1, · · · , n}

(14)

Without loss of generality, we assume that the tasks are

sorted based on their index i and the first k tasks are selected

by the scheduler.
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IV. ADVANCED DESIGN

In previous sections, we have introduced the basic design

of the DEOS. In this section we describe three improvements.

A. Look-up Table

In wireless sensor networks, most of the tasks are predeter-

mined and are executed for a long time (e.g., several months)

after the sensor nodes are deployed. Although the environ-

mental energy changes dynamically, the variation range of the

available energy is limited. For example, in Figure 1(b), the

available energy only has 57 distinct quantized values during

the whole 48-hour experiment period. To reduce computational

overhead and improve energy efficiency of the scheduler, we

propose a look-up table based approach (shown in Figure 6).

Similar to the look-up table used in computer architecture,

when the energy-oriented scheduler receives task set {τ1, τ2,

· · · , τn} and available energy EA(T ) information, it uses this

information as an index to check whether the look-up table

contains the corresponding result which is the numbers of each

task to be executed (i.e., {N1, N2, · · · , Nn}). If the look-up

table already contains the result, then the scheduler skips the

basic scheduling operations (i.e., decomposition, combination,

admission control and optimization) and directly uses the

result in the look-up table to schedule the tasks. Otherwise,

the scheduler goes through the basic scheduling operations to

obtain the schedule and records this in the look-up table.

In order to reduce the size of the look-up table, we use

a bitmap to represent a task set. That is, one bit of data

represents a single task. For example, [010010] represents a

task set containing 6 tasks among which tasks τ2 and τ5 need

to be scheduled. To reduce the look-up time, a binary search

algorithm is executed, which has time complexity of O(logI).
Here I is the total number of indexes.

B. Elimination of Tasks’ Energy Uncertainty

In previous sections, we assume that the scheduler has the

energy consumption information of all the tasks. However,

some new tasks may be added to support new applications after

deployment and their energy consumption may be unknown.

In this case, the scheduler will try to schedule these new tasks

together with other tasks based on their priorities. When the

scheduler encounters the first energy uncertain task and there

exists some extra available energy during the scheduling stage,

it stops scheduling the rest of the tasks and starts to execute the

energy uncertain task together with the other already scheduled

higher priority tasks. While executing the energy uncertain

task, it records the energy consumption of this task using an

online energy meter (such as iCount [13]). After measuring the

energy consumption of this task, the scheduler schedules this

task based on its measured energy consumption and resumes

scheduling the rest of the lower priority tasks based on the

remaining available energy. When the scheduler encounters the

second energy uncertain task, it conducts the same procedure

as described above. This process continues until the energy

utilization of all the scheduled tasks is larger than or equal to

one.

C. Sporadic Task Handler

In previous sections, we introduced the design of energy-

oriented scheduling based on the assumption that all tasks are

predetermined. However, sporadic tasks may arise in some

applications, such as event detection and handling. To manage

sporadic tasks, we design an admission controller. When a

sporadic task τS arrives, the handler will schedule τS based

on τS’s priority and deadline. There are three cases:

Case 1: If other tasks have not been scheduled or executed

when τS arrives, then the scheduler treats τS the same as

the other regular tasks and executes the Highest Priority First

algorithm to select the tasks. τS will be selected, if it’s priority

is high enough. If τS’s priority is very low, then τS is not

important. Therefore, it may not be executed when there is

insufficient energy.

Case 2: Other tasks have already been scheduled at the time of

arrival of τS and τS’s deadline is later than the finish time of all

the currently scheduled tasks. Therefore, the scheduler treats

τS the same as the other regular tasks and tries to schedule it

in the next scheduling period.

Case 3: Other tasks have already been scheduled when τS
arrives and τS’s deadline is within the current scheduling

time interval. In this case, the scheduler has to reschedule

the tasks based on τS’s priority and energy consumption.

Since all other tasks have already been scheduled, there is no

extra expected energy available to schedule τS . The scheduler

finishes the execution of current instance of the task to avoid

thrashing. By doing this, we avoid τS’s pre-emption in the

middle of an unfinished task. Since the energy consumption

value of a single instance of the task is very small, the system’s

performance will not be affected.

The scheduler then sequentially pauses the execution of

tasks which have lower priority than τS , until the amount of

energy obtained from these paused tasks is sufficient to execute

τS or all the lower priority tasks are paused. If there is still not

enough energy to execute τS after all the tasks (which have

lower priorities than τS) are paused, the scheduler will resume

these lower priority tasks and try to schedule τS in the next

scheduling period until either τS is executed or τS misses its

deadline.

V. IMPLEMENTATION AND EVALUATION

In this section, we evaluate DEOS performance under

different types of environmental energy patterns. We have

implemented DEOS using TinyOS and NesC on MICAz

motes. The key advantage of the energy-oriented design is its

ability to efficiently schedule tasks based on the dynamically

available energy. We use the following two metrics to evaluate

the performance of our system.
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Fig. 8. Indoor Experiment

Number of Tasks Executed: the total number of instances of

each task that are executed throughout the experiment.

Number of Missed Deadlines: the total number of instances

of each task that are not executed before the task’s deadline.

For example, due to insufficient energy, a task τi may only

be scheduled or executed for Ni times (0 6 Ni < Nimin
)

within the scheduling interval T , which is 5 minutes in

our experiment. In this case, we consider that τi misses its

deadline. The number of τi’s missed deadlines is Nimin
−Ni.

To compare performance, we also implemented the follow-

ing two schedulers as baselines.

• Weighted Earliest Deadline First (WEDF): With the

information of available energy, the scheduler allocates tasks

based on their deadlines. If tasks have the same deadline, the

task with higher priority will be scheduled earlier.

• Computing-Oriented Scheduling (COS): The scheduler

allocates tasks based on their computational properties so as

to minimize the CPU idle time.

A. Experiment Setup

We ran our system under two different scenarios: outdoors

and indoors. These scenarios are carefully selected to represent

a wide range of energy harvesting patterns: (i) periodically

and dynamically changing energy for the outdoor environ-

ment, and (ii) periodic and relatively stable energy for the

indoor environment. For each scenario, our TwinStar hardware

platform [3] woke up every 5 minutes to predict and record

the available energy pattern. The recorded energy information

in the outdoor scenario is used as an input for the identical

MICAz mote to work under 3 different scheduling methods:

WEDF, COS, and DEOS. Similar experiments are conducted

for the indoor scenario. Four types of task (summarized in

Table I) are executed by the MICAz mote. Each task represents

an application as follows:

TABLE I
PROPERTIES OF TASKS

Task Types Nimin
Nimax

Priority (Pi) Value (Vi)

τ1 40 150 1 3

τ2 40 150 2 4

τ3 40 150 3 2

τ4 40 150 4 1

Task τ1 for Event Detection: This task periodically samples

a sound sensor and sends out the value via radio.

Task τ2 for Environmental Monitoring: This task period-

ically samples a temperature sensor and writes the value to

flash memory.

Task τ3 for Time Synchronization: This task periodically

sends out a packet containing the sensor node’s local time. It

is normally used in flooding protocols [14].

Task τ4 for Data Compression: This task periodically reads

an 8 byte temperature values from flash memory, calculates the

average value, and then writes the average back to memory.

B. Outdoor Experiment

In the outdoor experiment, we deployed our hardware plat-

form outside a fifth-floor apartment for 76 hours. Figure 7(a)

shows the energy harvested by the hardware platform in this

experiment. The corresponding predicted available energy is

shown in Figure 7(b). Figure 7(c) compares the number of

tasks executed using weighted earliest deadline first (WEDF),

computing-oriented scheduling (COS), and dynamic energy-

oriented scheduling (DEOS) methods. By using the Highest

Priority First algorithm, WEDF and DEOS allow the MICAz

mote to execute a larger number of instances of high priority

tasks (i.e., τ1, τ2, and τ3) than COS. For example, the system

running DEOS executed τ1 for 103168 times, which is 28.93%

greater than the number of executions of τ1 under COS. With

task combination and concurrent execution, DEOS efficiently

utilized energy. As a result, the system running DEOS exe-
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Fig. 9. Scheduler Overhead

cuted more instances of tasks than the system running WEDF

and COS.

Figure 7(d) shows the number of instances of tasks that

missed their deadlines when the MICAz mote is running

WEDF, COS, and DEOS. By scheduling and executing higher

priority tasks first and waiving the execution of lower priority

tasks during energy deficient stages, tasks τ1, τ2, and τ3
did not miss a deadline during the whole experiment period

under DEOS. By contrast, tasks suffered missed deadlines

under WEDF and COS. Moreover, without aggregating the

computing activities, the system running WEDF consumes

more energy than the system running COS. Therefore, the

system running WEDF has a greater total number of missed

deadlines than the system running COS when energy is a

bottleneck. Although τ4 misses more deadlines under DEOS

than under COS, DEOS still executes 63324 instances, which

is larger than the required minimum number. Since τ4 is a data

compression task, the delayed execution of τ4 does not affect

the system’s behavior.

C. Indoor Experiment

In the indoor experiment, our hardware platform was de-

ployed under an overhead light in our lab for 76 hours. The

light was turned on in the morning, when people arrived the

lab, and turned off in the middle of the day or during the night

when no one was inside the lab.

Figures 8(a) and 8(b) show the energy harvested by the

hardware platform and the corresponding predicted available

energy, respectively. In Figure 8(a), the fluctuations in the

energy level were due to the turning on and off of neighboring

overhead lights. Since the light intensity in the indoor envi-

ronment is much lower than that in the outdoor environment,

the available energy in the indoor experiment (shown in

Figure 8(b)) is much less than in the outdoor experiment

(shown in Figure 7(b)). This results in fewer task executions

in the indoor experiment (shown in Figure 8(c)). Interestingly,

the indoor experiment has fewer missed deadlines (shown in

Figure 8(d)) than the outdoor experiment. This is because the

duration of the low available energy stage in indoor experiment

is shorter than the one in outdoor experiment.

D. Overhead Analysis

Dynamic energy-oriented scheduling is an online process

and the execution of the scheduler itself consumes energy,

hence its overhead must be carefully considered. We used

an oscilloscope to record the current draw of a MICAz

mote during the scheduling process in the indoor experiment.
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Fig. 10. Impact of Sporadic Tasks

Figure 9 shows the scheduler overhead with and without an

advanced design. By using a look-up table, the scheduler can

reduce the current draw by almost 11 times. Even without

using the look-up table, scheduler overhead is very small. The

scheduler draws approximately 7.2mA for about 0.5983ms
(shown in Figure 9(a)), which translates into 12.923µJ . In

the worst case of the outdoor and indoor experiments, the

available energy is 32.845mJ . Therefore, scheduler overhead

is only 0.039%, which is negligible.

E. Simulation Evaluation: Impact of Sporadic Tasks

Sporadic tasks affect the performance of the scheduler. In

this section, we use the available energy trace in outdoor

experiment as an input and evaluate the impact of sporadic

tasks through simulation. Let τS denote a sporadic task which

sends out emergent data packets. τS is generated according

to a Poisson process and is given the highest priority. The

deadline of τS is 0.1T . In other words, τS has to be executed

within 0.1T after its generation. Every data point on a graph

represents the average value of 10 runs, and 95% confidence

intervals for the data are within 2 ∼ 8% of the mean shown.

Figure 10 compares τS’s impact on the system running WEDF,

COS, and DEOS. Compared with the outdoor experiment

result without the sporadic task (shown in Figure 7(c)), the

sporadic task τS causes a reduction in the number of execu-

tions of tasks when the system is running WEDF, COS, and

DEOS (shown in Figure 10(a)). However, by using DEOS, all

instances of tasks τS , τ1, τ2, and τ3 are executed before their

deadlines (shown in Figure 10(b)). Since τ4 can be delayed,

missing its deadline does not affect the system’s behavior. The

system running COS does not schedule tasks based on their

priority. Therefore, the sporadic task causes the number of

missed deadlines to increase by 255.9% when the system is

running COS.

VI. RELATED WORK

Scheduling algorithms have been widely used by most

modern systems to balance load [15], improve throughput [16],

share bandwidth between user flows [17], and reduce pipeline

interlock [18]. Furthermore, researchers have proposed specific

scheduling methods to improve the performance of particular

systems, such as servers [19], routers [20], and storage sys-

tems [21]. Despite this rich literature, the existing scheduling

methods do not treat energy as a first-class schedulable re-

source and dynamically schedule tasks based on the changing

available energy in the system.



9

On the other hand, energy management is an intensively

studied area. Many solutions have been proposed for different

systems, including energy management for data centers [22],

storage systems [23], and smart homes [24], [25]. More-

over, some researchers took different approaches by design-

ing multiple task scheduling for data dissemination [26],

[27], [28], and developing ultra-low-power energy-harvesting

devices [29]. However, none of these energy management

solutions investigate scheduling in sustainable sensor networks

where environmental energy can change dynamically. The

most closely related works are Dewdrop [30], STAM [31],

and virtual battery [32]. Dewdrop and STAM only schedule

recurring tasks based on the environmental energy. In contrast,

DEOS dynamically optimizes energy utilization among multi-

ple tasks for most of hardware platforms in sensor networks.

Virtual battery logically divides energy among applications to

virtualize their private energy sources. Since virtual battery

focuses on energy virtualization and isolation among appli-

cations, it is highly complementary to our energy-oriented

scheduler which can dynamically schedule multiple tasks in

a single application.

VII. CONCLUSIONS

This work introduces the concept of dynamic energy-

oriented scheduling (DEOS). By conducting decomposition,

combination, concurrent execution, admission control, and

task quantity optimization, the DEOS method can optimally

allocate tasks based on the dynamically changed available

energy. Although we design and evaluate the DEOS in sustain-

able wireless sensor network, the concept of DEOS can also

be applied to other energy harvesting embedded systems [33].

To our knowledge, this work is the first to dynamically

schedule tasks based on the tasks’ energy consumption and

the unstable environmental energy. We invested a significant

amount of effort to evaluate our design in two real-world

settings. The results indicate the effectiveness of our design

compared to the other designs.
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