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Abstract—This paper proposes a new technique to detect mo-
bile malware based on information flow analysis. Qur approach
examines the structure of information flows to identify patterns of
behavior present in them and which flows are related, those that
share partial computation paths. We call such flows Complex-
Flows, as their structure, patterns, and relations accurately
capture the complex behavior exhibited by both recent malware
and benign applications. N-gram analysis is used to identify
unique and common behavioral patterns present in Complex-
Flows. The N-gram analysis is performed on sequences of API
calls that occur along Complex-Flows’ control flow paths. We
show the precision of our technique by applying it to four
different data sets totaling 8,598 apps. These data sets consist
of both recent and older generation benign and malicious apps
to demonstrate the effectiveness of our approach across different
generations of apps.

I. INTRODUCTION

According to security experts [1], over 37 million malicious
applications (apps) have been detected in only a 6-month
span in the beginning of 2016. Clearly, malware detection is
crucial to combat this high-volume spread of malicious code.
Previous approaches for malware detection have shown that
analyzing information flows can be an effective method to
detect malicious apps [5, 10, 23]. This is not surprising, as
one of the most common characteristics of malicious mobile
code is collecting sensitive information from a user’s device,
such as a device’s ID, contact information, SMS messages,
location, as well as data from the sensors present on the
phone. When a malicious app collects sensitive information,
the primary purpose is to exfiltrate it, which unavoidably
creates information flows within the app code base.

Many previous systems have leveraged this insight and
focused on identifying the existence of simple information
flows — i.e. considering an information flow as just a (source,
sink) pair. A source is typically an API call that reads sensitive
data, while a sink is an API call that writes the data read
from a source. These previous approaches use the presence or
absence of certain flows to determine whether or not an app is
malicious and can achieve 56%-94% true negative rates when
applied to known malicious app data sets.

In this paper, we show that there is a need to look beyond
simple flows in order to effectively leverage information
flow analysis for malware detection. By analyzing recently-
collected malware, we show there has been an evolution in
malware beyond simply collecting sensitive information and
immediately exposing it. Modern malware performs complex
computations before, during, and after collecting sensitive

information. More complex app behavior is involved in lever-
aging device sensitive data. A simple (source, sink) view of
information flow does not adequately capture such behavior.

Furthermore, mobile apps themselves have also evolved in
their sophistication and in the number of services they provide
to the user. For instance, most common apps now leverage a
user’s location to provide additional features like highlighting
points of interest or even other users that might be nearby.
Augmented reality apps go a step further, leveraging not only
a user’s location, but also their camera and phone sensors to
provide an immersive user experience. Phone identifiers are
now commonly used to uniquely identify users by apps that
tailor their behavior to the user’s needs. This means that benign
apps now use the same information that malicious apps gather.
As a direct result, many of the exact same simple (source, sink)
flows now exist in both malicious and benign apps.

In general, the key to distinguish malicious apps and benign
apps is to discover the difference of app behavior on sensitive
data usage in apps. We propose a new representation of
information flows, called Complex-Flows, for a more effective
malware detection analysis. Simply put, a Complex-Flow is
a set of simple (source, sink) flows that share a common
portion of code in a program. For example, a program can
read contact information, encrypt it, and store it in storage as
well as send it over the Internet. This means that this program
has two simple flows—a (contact, storage) flow and a (contact,
network) flow—that share a common portion of code in the
beginning of each flow (i.e., reading and encryption). Our
Complex-Flow then represents both flows together as a set
that contains both flows.

Complex-Flows give us the ability to distinguish different
flows with same sources and sinks based on the computation
performed along the information flow as well as the structure
of the flows themselves. We leverage this insight and develop
a new classification mechanism for malware detection that
uses Complex-Flows as the basis for classification features.
The details of this classification entail an involved discussion,
which we defer to Section IV.

In order to evaluate our technique, we have used 3,899
benign apps downloaded from Google Play and 3,899 known
modern malicious apps. Our results show that our technique
can achieve 97.6% true positive rate and 91.0% true negative
rate with a false positive rate of 9.0% when classifying
modern malware. This shows that the behavior captured by
our Complex-Flows can be a significant factor in malware
detection.



[ Source [ Sink |
HttpClient:execute
HttpClient:execute
Log:d
Log:d

TelephonyManager:getDeviceld
TelephonyManager:getSubscriberld
LocationManager:getLastKnownLocation
TelephonyManager:getCellLocation
TABLET
INFORMATION FLOWS IN BOTH BENIGN AND MALICIOUS APPS

The contributions of this paper are as follows:

« We present Complex-Flow, a new representation to reveal
how an app leverages device sensitive data focused on the
structure and relationships between information flows.

e« We present a new classification mechanism that lever-
ages Complex-Flows to distinguish malicious apps from
benign apps.

« We conduct a detailed evaluation study that highlights the
differences between historical and recent apps.

The rest of the paper is organized as follows. We first
present a series of motivating examples in Section II. We
discuss Complex-Flow and N-gram analysis of API usage
in Section III. Our system design and implementation are
discussed in Section IV. We show the effectiveness of our
tool in Section V. Related work and conclusions are given in
Section VI and Section VII respectively.

II. MOTIVATION

To illustrate how modern benign and malicious apps can
confound malware detectors that leverage information flows,
consider one benign and one malicious app that contain the
same (source, sink) flows shown in Table I. The benign
app, com.kakapo.bingo.apk, is a popular bingo app available
in Google Play. The malicious app masquerades as a video
player, but it also starts a background service to send out pre-
mium messages and steals phone info including IMEI, IMSI.
Both apps send out phone identifiers (IMEI, IMSI)
over the Internet and write location data into log files. Thus,
even if we can detect the information flows shown in Table I
we cannot distinguish these two apps.

To combat this problem, many previous approaches would
consider sending of phone identifiers as an indication of ma-
licious intent [24]. This approach worked well for some time
as this was often considered privileged information. However,
we and others have noticed that sending this information
is becoming more common in benign apps, usually as a
secondary authentication token for banking apps, or in the case
of our bingo app and many other games, as a way to uniquely
identify a user. In general, it has become more common that
benign apps require additional information to provide in-app
functionality. Many ad engines collect this kind of information
as well [19]. Thus, it is difficult to tell which apps are benign
and which are malicious by examining source and sink pairs
alone. More information is required to differentiate these two
apps.

Let us examine how both our example apps access sensitive
data, to see if we can differentiate between them. We present
the bingo app and the malicious app in the form of decompiled

Malware Benign APP
Cver )Cmst ) Civer ) Cimst )
Encode
Gzip
| HttpClient | HttpClient | | HttpClient

Fig. 1. App Behavior Comparison in Benign and Malware Apps

| | public static String getLmMobUID(Context context){

TelephonyManager tm= (TelephonyManager)

' context.getSystemService("phone") ;

if (isPermission(context,
"android.permission.READ_PHONE_STATE"))

6 localStringBuffer.append(tm.getDeviceId());

s |}

o |public static String getImsi(Context context){
10 TelephonyManager tm = (TelephonyManager)

1 context.getSystemService("phone") ;

12 param = tm.getSubscriberId();

Fig. 2. Data Access Code Snippet in Benign App

DEX bytecode (Android’s bytecode format) in code snippets
Fig. 2 and Fig. 3, respectively. We observe that the benign
bingo app accesses the sensitive data it requires in lines 6,
and 12, whereas the malicious app collects the sensitive data
in aggregate in a single method in lines 3-4. The malicious
app also bundles the data in lines 5-8 and sends the aggregated
data over the network in line 10. In contrast, our bingo app
does not send data immediately after collecting it. As shown
in this example, the two apps contain the same information
flows, but the structure of these flows is quite different.

The difference becomes even more profound if we examine
the computation the apps perform along the code path of the
information flow. Previous studies [13, 9] have shown that
system call sequences effectively capture the computations
done in a program; thus, we examine the API call sequences
occurring along the flows in both benign and malicious apps,
and compare them.

Fig. 1 shows the information flow view of these two apps. In
particular, we use the flow TelephonyManager:getSubscriberld
— HttpClient:execute as an example to illustrate the differ-
ences in benign and malicious apps. Fig. 4 and Fig. 5 show
the API call sequences occurring along the flow. The lines
in black show the same behavior of the two apps, with both
preparing to fetch the IMSI. The difference between the apps
is highlighted in red. The malicious app fetches another phone
identifier(IMEI) (line 3) right after fetching IMSI, then couples
this data (line 5) and compresses it (line 6). The benign app,
on the other hand, simply checks and uses the network (lines



| |private void execTask(){

this.imei =
4 this.imsi =

localObject2.getDeviceId();
localObject2.getSubscriberId();
5 str2 = "http://" + Base64.encodebook(

6 "2maodb3ialke8mdeme3gkos9glicaofm", 6, 3) +
7 "/mm.do?imei=" + this.imei;

8 localStr2 = str2 + "&imsi=" + this.imsi;

10 paramStringl =
((HttpClient)localObject) .execute(localStr2)

Fig. 3. Data Access Code Snippet in Malware App

I | <Context: getSystemService(String)>
<TelephonyManager: getSubscriberId()>
<TelephonyManager: getDeviceId()>

+ | <BasicNameValuePair: <init>(String,String)>
<URLEncodedUtils: format(List,String)>

6 | <XmlServerConnector: byte[] zip(byte[])>

7 | <HttpGet: void <init>(String)>

s | <DefaultHttpClient: void <init>()>

o | <HttpClient: getParams()>
0 | <HttpParams: setParameter(String,0Object)>
i1 | <HttpClient: getParams()>
> | <HttpParams: setParameter(String,0Object)>

13 | <HttpClient: execute(HttpUriRequest)>

Fi

g. 4. API Call Sequence in Malware App

3-5).

This example shows that by comparing the API sequences
we can infer that even though these two apps share the same
information flow they differ in app behavior. Traditional data
flow analysis fail to differentiate malicious app behavior from
benign one if they both leverage the same set of sensitive
data, since it misses the relation of different information flows
and the different behavior of these two apps. In our approach,
we leverage this insight and represent a set of related simple
flows as a Complex-Flow, and develop a machine learning
technique to discover which behavior along information flows
and Complex-Flows are indicative of malicious code. We
further describe this in the next section.

III. CoOMPLEX-FLOWS

The analysis of our example apps revealed that it is common
for multiple data flows to access sensitive resource data.
However, the intent, purpose, and net effect of these operations
often differ between the malicious and benign code. We
propose the concept of a Complex-Flow, a mechanism that
captures the usage of sensitive mobile resources, but also
reveals the structure of this usage as well as the relation
between different uses.

A. Multi-Flows

To compute Complex-Flows, we must first discover the
relationships between simple flows. We call simple flows
which are computationally related to one another Multi-Flows.

| | <Context: getSystemService(String)>
<TelephonyManager: getSubscriberId()>
<PackageManager: checkPermission(String,String)>
+ | <WifiManager: getConnectionInfo()>
<WifiInfo: getMacAddress()>
¢ | <TextUtils: isEmpty(CharSequence)>
7 | <TextUtils: isEmpty(CharSequence)>
s | <TextUtils: isEmpty(CharSequence)>
o | <HttpGet: <init>(String)>
10 | <BasicHttpParams: <init>()>
11 | <HttpConnectionParams:
setConnectionTimeout (HttpParams,int)>
<HttpConnectionParams:
setSoTimeout (HttpParams,int)>
13 | <DefaultHttpClient: <init>(HttpParams)>
1+ | <HttpClient: execute(HttpUriRequest)>

Fig. 5. API Call Sequence in Benign app

Abstractly, a Multi-Flow is composed of multiple simple flows,
such that any two simple flows in the Multi-Flow share a
subset of their computation.

Let SRC be the data source an app accesses. Let SINK be
the sink point the data flows into. Let .S,, be an intermediate
statement in the program where the source data or data derived
from the source data is used (i.e. a data flow).

Definition 1: A simple flow, SRC — SNK, is composed
of a sequence of statements S, which includes SRC and
SNK:

S=SRC ~ S;~ 8y ..~ Sp_1~ S, ~ SNK.
We say that a sequence S is a subsequence of a flow F, written
as S C F, if S is contained within F.

Definition 2: A Multi-Flow represents multiple simple flows
that share common computation within a program. Let I be
a set of all simple flows in a program. A Multi-Flow for a
sequence S, F’(S), is a set of simple flows in F that share S
as a common subsequence. It is defined as:

F/(S) = {Fz‘ F; € Fand S - Fl}

Thus, the simplest Multi-Flow occurs when two simple
flows share the same source or the same sink. It is important
to distinguish that by source and sink we not only mean a
given API call, but where that API occur within the program.
Section II provides a real-world Multi-Flow example with
multiple device identifiers collected at once and sent out over
the network. Here, the data is sent out not only just over the
same sink, but also over the same control flow path.

B. Complex Flows

Information flow analysis focuses on discovery of the start
and end points of data flows, whether they be simple flows
or Multi-Flows. Analysis of the computations captured by
Complex-Flows is required to gain understanding of the be-
havior of the Multi-Flow. Specifically we focus on discovery
of the interactions between an app and platform framework.
For example, if an app wants to send out the DeviceId
over network, it must leverage the public network APIs of
the platform framework to complete this operation. Or if the
app wants to write Deviceld via the logging system, it must



invoke the APIs of the Android provided android.uti.Log
package. Even if the app does nothing but simply display
sensitive information on screen, it still must do so through the
framework GUI APIs. A formal definition of Complex Flows
is as follows:

Definition 3: Let S be a simple flow. We define an API
sequence of S as a filtered sequence over S that only contains
API call statements. Note that both the source and sink are
API calls by definition.

For a formal definition of an API sequence, we write S €
API, if the statement S is a call to an API function. Then an
API sequence of S is produced by filtering S recursively using
the following three rules, which essentially removes all non-
API calls from a simple flow (below, S is a single statement,
and S’ is a sequence of statements):

Rule 1: filter(S ~ S') = S ~» filter(S') if S € API
Rule 2: filter(S ~ S") = filter(S') if S ¢ API
Rule 3: filter(d) =0

Definition 4: We define a Complex Flow C'F' in terms of
a Multi-Flow, F'(S) as the set of filtered sequences (i.e., API
sequences - AS) for each flow in the Multi-Flow:

CF = {AS|AS = filter(F),F € F(S)}.

Definition 5: An N-gram API set is a set of API sequences
of size N derived from an API sequence. Formally, a set
of N-grams over a filtered sequence is defined as follows,
where |S’| denotes the size of the filtered sequence S’:

N-gram(S) = {S'|S" C §,|5"| = n}

Definition 6: We define all N-grams for a Complex
Flow CF as a set of N-gram API sets, one derived from
each filtered sequence AS contained in the Complex Flow:

{NG|NG = N-gram(AS), AS € CF)}.

We extract the app’s framework API call sequences to
capture the computations performed over sensitive data. We
only include those sequences present within Complex-Flows.
A Complex-Flow, represented as a set of sequences of APIs,
including the source and sink pairs of all simple flows present
in the Multi-Flow.

IV. SYSTEM DESGIN

We have built an automated malware detection system
that classifies apps as malicious or benign via analyzing
the N-gram representation of Complex Flows described in
Sections II and III. This classification system is integrated
into our BlueSeal compiler [20] [14], a static information flow
analysis engine originally developed to extract information
flows from Android apps. It also can handle information
flows triggered by UI events and sensor events. BlueSeal is
context sensitive, but is not path sensitive. It takes as input
the Dalvik Executable (DEX) bytecode for an app, bypassing
the need for an app’s source. BlueSeal is built on top of
the Soot Java Optimization Framework [21] and leverages
both intraprocedural and interprocedural data flow analysis. In
addition, BlueSeal is able to resolve different Android specific
constructs and reflection. More details are discussed in our
previous paper [20].

Our implementation extends BlueSeal to discover Complex-
Flows in addition to its native capability to detect simple
information flows. The automated classification component
performs the following four analysis phases to generate fea-
tures and perform classification of apps as malicious or benign:
(1) Multi-Flow discovery, (2) API call sequence extraction,
(3) N-gram feature generation, and (4) Classification. Details
for each phase are discussed in the following subsections.
Our tool is open-source and available online. Please refer
http://blueseal.cse.buffalo.edu/ for details.

A. Multi-Flow Discovery

Traditional information flow analysis mainly focuses on the
discovery of a flow from a single source to a single sink.
We have extended BlueSeal to extract Multi-Flows, where
individual single source to a single sink flows are aggregated
and connected. We leverage data flow analysis techniques
to extract paths contained within each simple flow. If two
information flows share a subpath with each other then these
two information flows belong to the same Multi-Flow. Each
Multi-Flow can contain multiple information flows, which
means it can contain multiple sources and multiple sinks.
We then analyze these Multi-Flows to extract API sequences
present within the Multi-Flow to create Complex-Flows.

The goal of the Multi-Flow detection algorithm is to: (1)
create a global graph of complete information flow paths for
an app, and (2) detect the intersection between individual
information flow paths that represent Multi-Flows. Here, the
intersection of two information flow paths simply means
two information flow paths share at least one node in the
global graph. The Multi-Flow detection algorithm itself works
by taking as input BlueSeal’s natively detected individual
information flow paths, which track simple flows with a single
source and single sink. To generate Multi-Flows, we augment
BlueSeal as follows:

« Whenever we encounter a statement containing sensitive
API invocation (which accesses a device’s sensitive data),
we add the invocation as a node in the global graph. This
is considered the starting point of a data flow path.

o Next, we check each program statement to see if there
is a data flow from the current statement to the initial,
detected statement. If so, we build an intermediate source
node in the global data flow graph, adding an edge from
the node for the initial statement. This step is recursive
and if there is a data flow from another program state-
ment to the intermediate source node, we create a new
intermediate source node as above. These intermediate
nodes are critical as they connect together single flows to
create Multi-Flows.

o The data flow’s path ends when we find a sink point.
These three types of points (i.e., source, intermediate, and
sink) are able to capture the whole data flow path for a
simple information flow while simultaneously outputting
a global graph that includes all, potentially intercon-
nected, data flow paths.



| | private void PhoneInfo(){
imei = Object2.getDeviceIld();
mobile = Object2.getLinelNumber();
4 imsi = Object2.getSubscriberId();
5 iccid = 10bject2.getSimSerialNumber();
6 url = "http://"+stri+" . xml?sim="+imei+
"&tel="+mobile+"&imsi="+imsi+"&iccid="+iccid;
8 Object2 = getStringByURL(Object2);
9 if ((Object2 != null) && (!"".equals(Object2))){
10 sendSMS(this.destMobile, "imei:" + this.imei);
1 Yelse{
2 writeRecordLog(url);
13 }
14 }
15 | private void sendSMS(String stril, String str2){
16 SmsManager.getDefault () .sendTextMessage(stri,
null, str2,null,null,0);
7o r
15 | private void writeRecordLog(String param){
19 Log.i("phoneinfo", param);
0 [}
21 |public String getStringByURL(String paramString){
2 HttpURLConnection conn =
(HttpURLConnection)new
URL (paramString) .openConnection() ;
2 conn.setDoInput (true) ;
2 conn.connect () ;
return null;

Fig. 6. API Call Sequence Extraction Example

« Multi-Flows are detected by iterating through this global
graph, finding simple data flows as well as Multi-Flows.

« Lastly, we extract API call sequences for all Multi-Flows.
While doing so, we analyze control-flow paths in each
Multi-Flow to extract precise API call sequences. We
discuss this further next.

B. Complex-Flow Extraction with API Sequence Analysis

Although the previous phase gives us the global graph
for an app with all Multi-Flows, it does not provide the
exact API call sequences occurring along the Multi-Flows,
i.e., Complex-Flows. Analyzing Complex-Flows requires us
to consider control paths with branches and loops, since they
produce separate code paths. For example, if there is an if-
else block in-between a source and a sink, there can be two
separate API sequences that start with the same source and
end with the same sink. Thus, we develop a mechanism to
examine all code paths along the Multi-Flows detected by the
previous phase, and extract the API call sequences.

Technically, this can be done within the previous phase, as
the original BlueSeal implementation already considers control
paths when analyzing data flows. However, we implement
our API sequence extraction as a separate phase for clean
separation of our new logic.

We illustrate this process with an example. Fig. 6 is a code
snippet extracted from a known malicious app. For simplicity,
we remove other pieces of code not pertinent to our discussion.
The general code’s data flow structure is shown in Fig. 7 and
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Fig. 7. Data Flow Structure of Example Code Snippet

‘ private void Phonelnfo() ‘

| public String getStringByURL() |
¥

‘ void writeRecordLog() ‘

void sendSMS() ‘

Fig. 8. Control Flow Structure of Example Code Snippet

the corresponding control-flow graph is shown in Fig. 8. Fig. 6
and Fig. 8 show that there are two execution paths that must be
extracted from the larger, singular Multi-Flow structure shown
in Fig. 7. Thus, we output one API call sequence for each
single path. The final output of the example code snippet is
shown in Table II.

In order to extract such API sequences, we analyze each
control flow path, statement by statement, in the execution
order to extract all platform APIs invoked along with Multi-
Flows. As mentioned earlier, we consider different branches
separately, which means that for each branch point, we create
two separate branch paths. For a loop, we consider the
execution of its body once if an API is invoked inside a loop.
This is due to the fact that precise handling of loops itself is
a challenging problem and an active area of research, which
requires loop bound analysis followed by unrolling each loop
for N times where N is the analyzed bound for the given loop.
Previous work proposes a mechanism to precisely handle loops
in Android apps [11]; it is our future work to incorporate it.
It is worth mentioning here that we have an opportunity to
reduce the complexity of precise loop analysis, since our N-
gram analysis described next has a maximum bound for an
API call sequence, i.e., we are only interested in an API call
sequence of size N. This means that we only need to unroll
a loop enough times to get an API call sequence of size N,
which reduces the complexity of handling loops. However, we
leave the full investigation of this as our future work.



TelephonyManager:getDeviceld()
TelephonyManager:getLine | Number()
TelephonyManager:getSubscriberId()
TelephonyManager:getSimSerialNumber()
java.net.URL:openConnection()
HttpURLConnection:setDolnput()
HttpURLConnection:connect()
SmsManager:getDefault()
SmsManager:sendTextMessage()
TelephonyManager:getDeviceld()
TelephonyManager:getLine 1Number()
TelephonyManager:getSubscriberId()
TelephonyManager:getSimSerialNumber()
java.net.URL:openConnection()
HttpURLConnection:setDolnput()
HttpURLConnection:connect()

Log: int i()

TABLE 11
FINAL API CALL SEQUENCE OUTPUT

Sequence 0

Sequence 1

TelephonyManager:getDeviceld()
TelephonyManager:getLine 1 Number()
TelephonyManager:getSubscriberId()
TelephonyManager:getDeviceld()
TelephonyManager:getLine I Number()
TelephonyManager:getLine INumber()
TelephonyManager:getSubscriberId()
TABLE TIT
EXAMPLE OF API SEQUENCE AND ITS 2-GRAMS

API Sequence

2-grams

C. N-gram Feature Generation

Next, our system uses the API call sequences extracted
in the previous step to generate features for classification
purposes. As mentioned above, the API sequences are the
interaction between app and platform, and they represent
app behavior regarding sensitive data usage. We use the N-
grams technique to generate these features from the API call
sequences as N-grams. Traditionally, the N-grams technique
uses byte sequences as input. In our approach, we generate
N-grams using API call sequences as input to reveal app
behavior. We consider each gram to be a sub-sequence of a
given API call sequence. Sequence N-grams are overlapping
substrings, collected in a sliding-window fashion where the
windows of a fixed size slides one API call at a time. Sequence
N-grams not only capture the statistics of sub-sequences of
API calls of length n but implicitly represent frequencies of
longer call sequences as well. A simple example of an API
sequence and its corresponding N-grams is shown in Table. III.
In detail, the first 2-gram indicates that the app access the IMEI
and phone number at once; while the second 2-gram indicates
that the app access the phone number and IMSI at once.

D. Classification

The last step of our malware classification tool is leveraging
machine learning techniques based on N-grams to perform
classification and identify significant, different behavior be-
tween malicious and benign apps. We generate N-grams for
each app analyzed and then use every N-gram in any app
as a feature to form a global feature space. Based on this
global feature space, we generate a feature vector for each
app, taking the count of each gram feature into consideration.

For example, if a gram feature appears three times in an app,
the corresponding value of this gram feature in app’s feature
vector will be three. Finally, we feed app feature vectors
into the classifier. We use two-class SVM classification to
determine whether an app is malicious or benign. The SVM
model is a popular supervised learning model for classification
and also leveraged by other systems to perform malicious app
detection [5].

V. EVALUATION

To evaluate our classification system, we have collected
both benign and malicious app sets. As mentioned earlier,
our system is trained on both benign and malicious apps
to identify different behavioral patterns between benign and
malicious apps. The detailed description of these data sets and
the proccess of our evaluation is discussed below.

Benign apps: The benign apps are free apps downloaded
from Google Play and include two sub-sets. One contains the
top 100 most popular free apps across multiple categories from
January, 2014 and the other contains random free apps across
multiple categories from Oct, 2016. We have used 3,899 apps
in total from the set of apps downloaded, using only those that
contain information flows for our evaluation.

Malicious apps: The malicious apps are from a dataset of
over 70,000 malware samples obtained from security opera-
tions over a month by a threat intelligence company operating
in the United States and Europe. Due to a non-disclosure
agreement this set is not publicly available. Each app from the
70K set has been scanned through multiple popular anti-virus
tools. Out of the entire set, we have randomly selected 3,899
apps that contain information flows to match up the number
of benign apps.

A. Evaluation Methodology and Metrics

The evaluation process is as follows:

« We use the cross-validation technique to divide apps into
a training set and a testing set. We trained the classifier
on the feature vectors from a random 90% of both benign
and malicious apps. The remaining 10% form the testing
dataset. This is a commonly used statistical analysis
technique.

o The training set is based on both benign and malicious
apps. N-grams generated from these apps are used to form
the global feature space. For each app, a feature vector
is built based on N-gram features.

« Then feature vectors of apps of the training set are used
to train a two-class SVM classifier.

o Lastly, after training, we use the testing set of mixed be-
nign and malicious apps for classification. The classifier
then provides a decision on an app, based on its N-grams
feature vector, as either “malicious” or “benign”.

Upon completion, we collect statistics based on the clas-
sification results. We use the following four metrics for our
evaluation:

TP True positive rate—the rate of benign apps recognized
correctly as benign.



[ gramsize [ TP [ TN [ FP [ FN [ accuracy ]
1 0.945 | 0.775 | 0.225 | 0.055 0.865
2 0985 | 0.736 | 0.264 | 0.015 0.872
3 0.988 | 0.659 | 0.341 0.012 0.833
4 0974 | 0.540 | 0.460 | 0.025 0.758
5 0976 | 0.528 | 0472 | 0.024 0.768
1,2 0.980 | 0.865 | 0.135 | 0.020 0.926
1,23 0.976 | 0910 | 0.090 | 0.024 0.945
1,234 0.976 | 0.757 | 0.243 | 0.024 0.874
1,2,3,4,5 0949 | 0.716 | 0.284 | 0.051 0.840
TABLE IV

GRAM BASED CLASSIFICATION RESULTS OF GOOGLE PLAY AND
MALWARE APPS

TN True negative rate—the rate of malware recognized cor-
rectly as malicious.

FP False positive rate—the rate of malware recognized incor-
rectly as benign.

FN False negative rate—the rate of benign apps recognized
incorrectly as malicious.

B. Google Play Apps versus Modern Malware Apps

In order to evaluate the effectiveness of our approach,
we run our analysis over a mixed set of both benign and
malicious APKs, which contains all 3,899 Google Play apps
and 3,899 modern malicious apps. The detailed results are
shown in Table IV. Interestingly, our classification with single
size grams does not perform well in distinguishing malicious
apps from benign apps. Furthermore, we also run classification
analysis with combined grams. As shown in the table, this
strategy works much better than single gram classification
strategy. Our classification on combined grams works best
with combination of 1-gram, 2-gram, and 3-gram with the true
positive rate of 97.6% and the true negative rate of 91.0%. In
this case, we can conclude that the usage of single APIs is not
enough to distinguish benign and malicious apps. There might
be two reasons for this. First, many modern malicious apps
are repackaged apps from legitimate apps; secondly, many
modern malicious apps attempt to trick people into installing
their apps by delivering desired functionality using benign
code. However, the fact that we can still achieve very good
accuracy in classification using different gram sizes means that
computational differences between benign and malicious apps
play a significant role in the data sets.

In general, analyzing all Google play and modern malicious
apps via our classification system proves that behavior analysis
with Complex-flows and N-grams can achieve a good perfor-
mance at distinguishing malicious apps from benign apps.

C. Discussion

Detailed app behavior, captured by N-grams, is an important
feature that can provide critical information used to distinguish
malicious apps from benign apps. The detailed app behavior
collected by Complex-Flow provides more evidence of the
maliciousness of an app (higher true negative rate of our
approach). For example, consider the following observation
identified by the research. Similar, long API call sequence
are less common across benign apps, indicating that benign

apps vary greatly in app behavior. However, long API call
sequence are common across malware apps and can improve
the detection rate of malicious apps, indicating malware shares
common behavior patterns. Different sizes of N-grams indicate
different complexities of app behavior. classification of modern
malware apps requires more than gram-1 feature. This means
these malware are similar with benign apps regarding the usage
of single APIs. However, they can still can be differentiated
from benign apps by analyzing detailed app behaviors repre-
sented by different gram features.

VI. RELATED WORK
A. Information Flow Analysis on Android

TaintDroid [8] is one of the most popular dynamic tools
to detect information leaks. By instrumenting an app, Taint-
Droid can report and stop leaks that occur during execution
of the app, but cannot determine if a leak exists prior to
execution. Researchers have also developed many static tools
to detect information flows: FlowDroid [4], CHEX [17].
DroidChecker [7] is a static analysis tool aimed at discovering
privilege escalation attacks and thus only analyzes exported
interfaces and APIs that are classified as dangerous. Li et
al. [16] propose IccTA to detect privacy leaks among compo-
nents in Android apps. Yang et al. [22] develop a control-flow
representation based on user-driven callback behavior for data-
flow analyses on Android apps. AppContext [23] extracts con-
text information based on app contents and information flows
and differentiates benign and malicious behavior. However, it
requires manually labelling of a security-sensitive method call
based on existing malware signatures.

B. Android Malware Detection

There are many general malware detection techniques pro-
posed for Android. Some of these leverage textual information
from the app’s description to learn what an app should do.
For example, CHABADA [12] checks the program to see
if the app behaves as advertised. Meanwhile, AsDroid [15]
proposes to detect stealthy malicious behaviors in Android
apps by analyzing mismatches between program behavior and
user interface. All these techniques rely on either textual
information, declared permissions in the manifest file, or on
specific API calls, while our approach focuses on analyzing
app behaviors based on the app code related to device sensitive
data.

Machine learning techniques are also very popular among
researchers for detecting malicious Android apps. However,
most of these solutions train the classifier only on malware
samples and can therefore be very effective to detect other
samples of the same family. For example, DREBIN [3] extracts
features from a malicious app’s manifest and disassembled
code to train their classifier, where as There are many other
systems, such as Crowdroid [6], and DroidAPIMiner [2], that
leverage machine learning techniques to analyze statistical
features for detecting malware. Mekky et al. [18] leverage
N-grams to analyze dynamic behavioral traces of malware.



VII. CONCLUSION

In this paper, we proposed a new concept of Complex
Flows to derive app behavior on device sensitive data. We
also present an automated classification system that leverages

app

behavior along with app information flows for classify-

ing benign and malicious Android apps. We have detailed
our approach to discover Complex Flows in an app, extract

app
We

behavior features, and apply a classification procedure.
show the effectiveness of our classification system by

presenting evaluation results on Google Play Store apps and
known malicious apps. For future work, we plan on refining
N-grams feature extraction to eliminate noneffective frame-
work API calls. We also can leverage other machine learning
classification techniques to find the most effective ones.
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