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Abstract—Blockchain-based audit trails provide a consensus-
driven and tamper-proof trail of system events that are helpful in
creating provenance in enterprise solutions. However, taking into
account the transaction bulk generated by these applications and
the throughput limitations of existing blockchains, a single ledger
for record keeping can be inefficient and costly. To that end,
we see an imperative need for a new blockchain design that is
capable of addressing current challenges, without compromising
security and provenance. Hence, we propose BlockTrail, a scal-
able and efficient blockchain solution for auditing applications.
BlockTrail fragments the legacy blockchain systems into layers of
co-dependent hierarchies, thereby reducing the time and space
complexity, and increasing the throughput. BlockTrail is proto-
typed on “Practical Byzantine Fault Tolerance” (PBFT) protocol
with a custom-built blockchain. Experiments with BlockTrail
show that compared to the conventional schemes, BlockTrail is
more efficient, and has less storage footprint.

Index Terms—Audit Trails; Blockchain; eGovernment

I. INTRODUCTION

Audit trails are important for efficient record management
and provenance assurance [1], [2]. For example, government
agencies are responsible for appraising properties and collect-
ing taxes from residents [3], [4]. Starting from cities, these
agencies work at various levels, including counties, states, and
federation. As such, they keep track of property exchange,
tax collection, permits, etc. Furthermore, these agencies have
applications that generate audit trails to perform auditing and
ensure system transparency. These applications continuously
monitor the application’s database, and generate an audit trail
record upon change in the value of an object. However, due
to the client-server relationship, audit trails are vulnerable to
a single point-of-failure, whereby an adversary can externally
and internally manipulate database and audit trails.

An intuitive solution to safeguard audit trails from single
point-of-failure is to replicate them over all applications. This
will raise the attack cost for the adversary since corrupting
audit trails would require attacking all applications. This
replication of audit trails can be achieved using blockchains,
to enable secure, transparent, and immutable management of
audit trails without needing a trusted intermediary [5], [6].

Current blockchain systems operate with a single-ledger
shared among all system entities. The use of a single-ledger
is therefore considered as a baseline model, atop which all
applications abstract their services. However, the use of single
ledger not only increases the storage footprint but also creates
a bottleneck by preventing parallel processing. Applied to
auditing, blockchains systems suffer from enormous space and
time complexity, owing to the rate and size of transactions.

To address those challenges, we take a clean-slate approach
towards the architecture of blockchain systems. We propose a

multichain blockchain model that segregates the network into
a set of layers, each capable of processing transactions inde-
pendently. We leverage the hierarchical structure of eGovern-
ment applications to facilitate parallel transaction processing
and subsidized storage overhead. Moreover, the layered archi-
tecture also increases the throughput of the system by reducing
congestion and transaction stall. In addition to the layered
architecture, we further enhance capabilities of BlockTrail by
using “Practical Byzantine Fault Tolerance” (PBFT) as the
consensus protocol. In contrast to the existing schemes such
as Proof-of-Work (PoW) and Proof-of-Stake (PoS), PBFT is
energy efficient and achieves higher throughput.

A major limitation of PBFT is its lower fault tolerance com-
pared to PoW and PoS. While PoW and PoS can withstand up
to 49% malicious entities in the system, PBFT, on the other
hand, can only sustain =~ 30% malicious nodes [7]. This is
one of the reasons why PBFT has not been popular among
applications with weaker trust models. However, specific
to the requirements of our audit trail application, we take
sufficient measures to equip BlockTrail with strong security
measures in order to mitigate various attacks.
Contributions. We make the following contributions in this
paper 1) We revisit the legacy designs of blockchains, and
introduce a multilayer blockchain architecture that ensures
higher throughput with low processing delays. 2) We present
BlockTrail; an end-to-end blockchain solution for audit trail
applications that uses the multichain blockchain model to
provide secure and tamper-proof audit trails. 3) We provide
the theoretical constructs of BlockTrail and validate its per-
formance through experiments and simulations.
Organization. The rest of the paper is organized as follow.
In §II, we present BlockTrail, followed by its analysis in §III.
In §IV, we report experiments and evaluation, followed by
related work and conclusion in §V and §VI.

II. BLOCKTRAIL DESIGN

We begin by providing an overview of a audit log applica-
tion that we use for the instrumentation of BlockTrail. The first
step in design is the access to a large-scale audit log generation
system that is currently being used by an enterprise. For this
purpose, we used the services provided by ClearVillage Inc.
[8], which provides software for cities and counties.

A. System Architecture

As defined previously, audit trails generated by the applica-
tion are broadly associated to the exchange of property infor-
mation among multiple entities at different hierarchies. This
exchange of information occurs among: 1) peers (replicas)
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Fig. 1. Design of our multichain blockchain system that is tailored to
the specifications of BlockTrail. Levels denote the hierarchies that keep
blockchains. At the lowest level, there are applications connected to a city
that emanate transactions from audit trails.

within the same city, 2) cities within counties, 3) counties
within states, or 4) states within a country.

In conventional schemes of generating blockchain-based
audit trails, a global blockchain is used to incorporate all
the transactions. Although, this serves the purpose of secure
and tamper-proof audit trails, it is not efficient and scalable.
Each transaction has to traverse the entire network and get
approval from all the peers. In particular, a local transaction
related to a state change at the city level will require approval
from all other parties in other cities that might not be relevant
to that transaction. In addition to causing delays, this also
limits the system throughput, since PBFT protocol serializes
the transaction processing.

We argue that efficiency and throughput constraints faced
by conventional systems can be resolved by partitioning
the network into multiple hierarchies. As such, transactions
that are specific to a group of organizations within a city
must be processed locally, while the transactions related to
cities within a county can be processed at the county level
and stored in county’s blockchain. Taking this bottom-up
approach from peers within the cities to the states within a
country, we obtain a hierarchical tree of blockchain system
that incorporates multiple blockchains, each holding data of
its corresponding set of peers. Transactions will be generated
by the organizations within the cities that act as a root in
the system. Each transaction will have an identifier that will
determine its destination blockchain.

Using this structure, our system will be able to achieve the
following features: 1) Transactions within the same branch can
be processed in parallel, thereby enabling parallel processing
and increasing throughput. 2) For a transaction within same
branch, the approval will be required from the leaf nodes
within that branch that are relevant to the transaction. This
will reduce the processing overhead incurred by transactions
in conventional scheme. 3) Other than transaction generation
and processing, this scheme is highly efficient in blockchain
queries during auditing process or for conflict resolution.
In Figure 1, we show the topology of our hierarchical
blockchain paradigm, and in the following, we provide the
notations that capture the abstraction of our model. Let £ =
{L1, L2, ..., Ls} denote the country-level (federal) hierarchy
that incorporates a set of all states within the country. This
hierarchical blockchain paradigm can be extended from four
levels to k levels, to increase the scallibility and reduce the

time and space complexity.

Keeping in mind the baseline fault tolerance of PBFT, we
assert that the minimum number of replicas in blockchain,
at each level is s > 4. For each state in Ly, let L; =
{l1,1,...,1.} be a set of counties in state. For each county
in L;, let I; = {p1,p2,...,pq} denote the number of cities
that are associated with each county. Finally, for each city in
lj, let ag = {n1,n2,...,n,}, be the set of peers (audit log
applications), operating within the city. Given this topology,
the overall size of the network .S, determined by the number
of audit-log applications, can be computed using.

s c d
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Here, X,;; represents the position of a node within the
system (identified by city, county, and state indexes). For each
level, we have primary replica that executes the verification
process. Specific to the design outlined in this paper, we
have a primary replica for each city, county, and state in the
system. Therefore, the total number of primary replicas in our
blockchain system are d + ¢ + s.

III. ANALYSIS OF BlockTrail

A. Transaction Processing and Throughput

To understand the efficiency our system with respect to
the transaction processing, we use a Markovian model that
broadly formulates the PBFT-based blockchain systems. To
that end, we envision that the system can be viewed as
a Poisson process characterized as an M/D/I queue at the
primary replica [9]. Here, M denotes the arrivals determined
by a Poisson process, D denotes the deterministic mean
service time, and 1 shows that there is one server in the
system. In M/D/I queue, as shown in Figure 2, A denotes
the mean arrival rate of the transactions at the primary replica
and D denotes the mean service rate of the active replicas that
collectively act as a server. From this, we can derive p = \/D,
which denotes the utilization of the server. If the arrival rate
is less than the service rate A < D, there is no queuing at the
primary replica, and each transaction gets processed before
the next arrival.

However, in practice, the rate of incoming transactions
is usually greater than the rate of transaction confirmation
[10]. Therefore, this leads to the formation of a queue at the
primary replica. In PBFT, if there are a number of active
replicas in the system, then the minimum number of messages
exchanged to verify the transaction are a(a — 1). Assuming
that the time taken to exchange one message in the system is ¢,
then the total time 7" taken to process a transaction becomes
t(t — 1). Therefore, as the size of network grows and the
number of active replicas increase, the time taken to process
the transaction decreases, and the service time of server D
decreases. Some key performance indicators of M/D/I queue
are the mean number of transactions in the system and the
average wait time for each transaction. As such, the mean
number of transactions L in the system can be calculated as:
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Fig. 2. M/D/I queue where transactions are arriving with rate A, and there
is one server that process the transactions at the average rate D
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Fig. 3. M/D/c queue with transactions arriving at mean rate A, and a group
of servers are processing transactions with rate D.

In (2), p is the server’s utilization, A is the arrival rate, and
t is the time taken to exchange one message. Moreover, the
average wait time for a transaction in the system w is:
2 LAt —t)?
W= T e N
Applied to our multichains, the total number of servers
increase at each layer for parallel processing. When the
number of servers increases, the number of replicas splits
between the servers, thereby reducing the service time for each
transaction. In such conditions, the system reflects an M/D/c
queue. Here, ¢ depends on the total number of replicas related
to the transaction. For instance, lets assume a transaction tx;
that is initiated between two cities C, and C}, at time ¢1. The
total replicas involved in the verification process are a + b.
On the other hand, another transaction tx, is initiated at the
same time t; among two different cities C. and C, having
total active replicas e+ f. Now, these two transactions can be
processed in parallel if the following condition is met:
Condition 1: Two transactions can be considered to be non-
overlapping if their associated active replicas are unique and
have no intersection. (Co, U Cp) N (C. UCy) = 0.
Depending on the size of replicas, each transaction will
be processed accordingly. Under the assumption that at a
given moment, there is a set of size c replicas that satisfy the
aforementioned criteria, the system will behave as an M/D/c
queue for transactions destined for each server. As the size
of server may vary, depending on the number of verifiers
involved with the transaction, the verification time and the
throughput of the system may also vary accordingly.

3)

B. Complexity Analysis

A key challenge with blockchain-based audit trails is the
time and space complexity associated with the network and the
blockchain size. The time complexity involves the time taken
by peers to develop consensus over the blockchain state. The
space complexity, involves the storage and the search overhead
that compounds due to append-only blockchain design. We
suggest that the multilayer architecture of BlockTrail can be
helpful in reducing the time and space complexity to achieve
faster consensus and enhance storage capability of peers.

To estimate the complexity of the system, let the total
number of transactions in the system be t. Let t; be the
total number of transactions at the city level, ¢. be the total

number of transactions at county level, ¢, be the total number
of transactions at the state level, and ¢y be the total number
of transactions at the federal level. In (4), we show the
relationship among these transactions. We assume that most
transactions are exchanged at the city level, and the amount
of transactions decreases as the hierarchy increases.

t=tyttetts+t; wherety>t, >t >tp (4
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1) Space Complexity: BlockTrail reduces the space com-
plexity of system by optimizing the transaction overhead at
each layer. Storage used by a conventional blockchain system
is t X n where ¢ is the total number of transaction and n is
the number of peers. Since ¢ >> n the space complexity of
flat blockchain system is O(t). However, a major downside
of this method is that every peer is required to maintain a
log of transactions that may not be related to its application.
Benefiting from the hierarchical structure of BlockTrail and
the non-overlapping nature of transactions, we suggest that
the space overhead can be considerable reduced.

In our design, a major fraction of transactions is stored
at the city level. Since transactions particular within the city
are only stored locally, all other cities are not required to
participate or store transactions. Deriving from (5), the major
fraction of city transactions can be be computed as follows:

tai+ (27 + 27 12771y (6)

Since t4¢ is the dominant component, therefore, the amor-
tized cost of storage, outside the city layer becomes negligible,
and the complexity of the system approximates to the com-
plexity at the lowest layer.

(242742 M) tyme

O((1429+2P +2) 1) ~ O (tai)
2) Time Complexity: With respect to time, we explore
two aspects of complexity namely, consensus complexity and
search complexity. We show that by design, in BlockTrail
amortized cost of search and consensus is better than the
conventional blockchain.
Consensus Complexity. To achieve consensus over the state
of blockchain with n replicas, n? —n messages are exchanged.
Assuming that the system receives 7 number of transactions,
the cost of consensus in the conventional blockchain model
becomes O(72). However, in BlockTrail, the system is parti-
tioned into sublayers, each comprising of different number of
replicas. This partitioning of the system, as shown in Figure 1,
reflects a tree structure with branches depicting multiple
layers. Leveraging the number of transactions at each layer
and using (5), the cost of consensus in conventional(7y,)
blockchain and BlockTrail (Ty;) can be computed as:

Teonw = O (2 —1) = O (£?)

8
Toe = (274277 +277) (t7 — ta) = O (£3) ®
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Fig. 4. Complexity Analysis of BlockTrail. For this analysis we used 100
peers, federal level transaction are 0.1%, state level are 0.9%, county level
are 9% and city level are 90%. Consensus time is measured in microseconds.

Since Ty < T,.ony, therefore, the cost of consensus in
BlockTrail is much less than the conventional blockchains.
Search Complexity. Similar to the space complexity, the
search complexity in blockchains depends upon the number of
transactions that are logged at a particular layer in the system.
As such, the search cost in conventional blockchains (S¢ony),
and BlockTrail (Sy;) becomes:

Seonv = O (tlog (1))  Sw = O (talog (ta))) (9

Given t; << tA, therefore as shown in (9), the amortized
search complexity in BlockTrail is much less than conventional
blockchains. In Figure 4, we show the plots obtained by com-
paring complexity of conventional blockchains and BlockTrail.

C. Security Analysis

We perform the security analysis of BlockTrail. We begin

by outlining our trust model and adversarial model to access
the strength of BlockTrail against various attacks. We use our
analysis to suggest possible advancements that can be made
to enhance the security of PBFT-based blockchain systems.
Trust Model. In BlockTrail, we assume that at any level of
blockchain, there are four or more replicas that process a
transaction. This criteria is critical for developing consensus in
PBFT blockchains, that require approval from at least 3f + 1
active replicas in the presence of f faulty replicas. Since
BlockTrail uses a permissioned blockchain, we can assume
a more trustworthy environment where peers have mutual
interests and limited incentives to misbehave.
Adversarial Model. For our adversarial model, we assume
a computationally-bounded adversary that controls a set of
malicious replicas in the system. We assume that the adversary
attains the trust of other peers and positions himself among the
active replicas. If the network has n replicas and the adversary
controls f replicas, then in conventional blockchain design,
the value of f has to be large enough (n — f < 3f + 1)
to enable the adversary to attain control over the system.
If the value of f is sufficiently large, then the adversary
can compromise the system by asking the faulty nodes to
withhold their signatures on a given transaction in order to
halt the verification. In a layered design, a major challenge
for adversary is to position his replicas in a way to obtain
maximum benefits with minimum effort. In the following, we
discuss the possible attack options for the adversary.

D. Positioning Malicious Replicas

The attacker with f malicious replicas can either randomly
position them in the network at different layers of blockchain
or select a targeted layer with fewer replicas to launch a
targeted attack. In this section, we will evaluate both these
design choices and analyze the state of the system under
attack. First, we observe the possibility when the attacker
randomly allocates f malicious peers in a layered blockchain
system with b number of blockchains.

The random allocation of f replicas in b blockchains
can be modeled as the classical balls-into-bins probability
problem [11]. Provided that there are b blockchains and f
malicious replicas, the probability that a replica gets allocated
to any random blockchain is % Using this premise, we are
interested in answering the following questions: 1) Probability
that two malicious replicas are allocated to a specific layer
of blockchain, 2) Probability that a specific blockchain has
exactly p malicious replicas, where p < f, 3) Probability a
specific blockchain has no malicious replica.

To answer the first question, let Alloci€ denote the event
that ¢-th replica gets allocated to blockchain £, and let M; ;
be the event that replica ¢ and j get allocated to the same
blockchain. By using Bayes’ rule, we can find the probability
of such an event as follows:

b

Pr(M; ;] = ) _ Pr[Alloc§|Alloc}|Pr[Alloc}]

=1 (10)

1 w1

=> 2 Pr{Allocy] = -
k=1

While doing the random allocation, a blockchain with more
sensitive information may get exactly the number of peers that
may compromise it. Let’s assume that a specific blockchain
bs with p number of honest replicas cannot accommodate
more than ¢ malicious replicas. This leads to a problem raised
in the second question which attempts to estimate the target
blockchain gets exactly p malicious replicas, where p < f.
This can be calculated by the following model:

Pr[b; has p replicas] = (2) (%)P(l B %)b—p
< bP 1 1

(1)
Toplr o pl
It remains within the realm of possibilities that the attacker
may not be able to position any malicious replica at any layer
of the blockchain. This eventually adds to our trust assump-
tions of the system and may require less effort to defend
against attacks. In the following, we show the probability that
a specific blockchain in our system exhibits this property and
contains no malicious replica belonging to the adversary. This
addresses the third question above.
1
Pr| blockchain gets no replicas] = 1 — (—) (12)
n
As the hierarchy of blockchain increases from city to
county and eventually the federal blockchain, the security
of the system also increases due to more active replicas
being involved in the transaction confirmation. To enhance the

security features of BlockTrail at lower levels of blockchain,
we propose the following countermeasures.
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Fig. 5. Results obtained from the simulations of BlockTrail. Our simulation results validate the theoretical analysis. Note that as the rate of transactions
increases and the number of peers grow, the consensus time increases accordingly. The consensus time is smallest in the city blockchain and it increases as
we proceed towards upper levels in hierarchy. Federal blockchain experiences the same delays as a conventional blockchain.

E. Countering Targeted Attacks

In a situation where there are r number of honest replicas
in a city blockchain and the attacker is able to position f
faulty replicas such that 4f +1 > f + r, then the attacker
will be able to stop transactions verification in that layer. To
counter this, we propose an expected verification time window
W, which will be set by the primary replica before passing
the transaction to the verifying replicas. The primary replica
knows the total number of active replicas in the system and can
calculate the total number of messages to be exchanged until
the transaction gets verified. In this case, the total number
of messages will be in the order of (f +7)? — (f + 7). If
one message, exchanged among f + r peers, takes t' time,
then the total time taken for transaction verification will be
cx (t?—t"), where c is an arbitrary constant set by the primary
replica. Based on these values, the primary replica can set an
expected time window W; > ¢ x (#2 —t') in which it expects
all peers to validate the transaction and submit their response.
Let ¢y, be the start time at which the primary replica initiates
the transaction. If by W, the primary replica does not receive
the expected number of responses from the replicas, it will
abort the verification process and notify the auditor.

Depending on the application’s sensitivity, the primary
replica can either set another optimistic value of W/, where
W] > W, and repeat the process or it can simply abort the
process and notify the auditors in application regarding the
malicious activity. We leave that decision to the audit log
application and its sensitivity to malicious activities. However,
in our experiments, we relax the condition of sensitivity and
re-submit the transaction for another round of verification.
We set a new expected verification time window W, and
wait for the response. Our choice of relaxing the condition of
sensitivity is owing to the unexpected delays in the message
propagation; given that our system would run over Internet.
However, if the primary replica does not receive the approval
of transaction the second time, it aborts the process and
notifies the application.

IV. EXPERIMENTS AND EVALUATION

We first prototype BlockTrail on a popular blockchain
framework called Hyperledger [12], to verify its correctness
and consistency with blockchain systems. However, in Hy-
perledger, we do not have the flexibility of applying the
layered blockchain design proposed in this paper. As such, we
employ the core functionality of Hyperledger including orders
(primary replica), replicas, and PBFT protocol. Leveraging the
design constructs of Hyperledger, we proceed with abstracting

its core functionality and developing our propriety blockchain
system that is tailored to the specifications of our application.
In the following, we outline the steps taken to deploy our
propriety blockchain system.

For experiment, we used existing logs to generate the
JSON packets to generate audit trail entries. These audit
trail entries are generated by the application and sent to the
relevant city, county, state or federal blockchain. The primary
replica notifies all concerned replicas that are associated with
a blockchain and request them to validate the transaction. We
generate a series of transaction for each layer of blockchain.
We vary the transaction rate by increasing A, and note the time
taken by all the peers to reach consensus over it. Additionally,
for each layer, we vary the number of peers and the size
of transaction to see the overhead in consensus time. A\ was
increased from 25 to 50, and the city peers were set to
10,20,30 and 50, the county peers were set to 50, 100, 150
and 200, and the state level peers were set to 80, 160, 240
and 320. Finally, the federal level peers were set from 100,
200, 300, and 400.

We evaluate the performance of BlockTrail by the time
taken for all the nodes to reach to a consensus over the trans-
action sent by the primary replica. Let ¢, be the transaction
generation time, and ¢, be the time at which it gets approval
from all active peers and gets confirmed in the blockchain.
In that case, the latency [; is calculated as the difference
between t. and t, (I; = t. — t., where t. > t4). The mean
values of each experiment are plotted in Figure 5. It can be
observed that as the number of peers increases at each layer,
the consensus time increases considerably. Also, as the rate of
incoming transactions increase, naturally, the consensus time
increases. As expected, the time for consensus at the city level
was less compared to county and the state level.

V. RELATED WORK

We review work on secure audit logging mechanisms and
contrast them with our approach to highlight our contributions.
Audit Trails. Schneier and Kelsey [13], [14] proposed a
secure audit logging scheme capable of tamper detection even
after the system compromise. However, their system requires
the audit log entries to be generated prior to the attack.
Moreover, their system does not provide an effective way to
stop the attacker from deleting or appending audit records,
which, in our case is easily spotted by BlockTrail.

Waterset al. [15] proposed a searchable encrypted audit log,
which uses identity-based encryption keys to encrypt audit
trails, and allow search by certain keywords. Yavuz and Ning



[16] developed a forward secure and aggregate audit logging
system for distributed systems, without using a trusted third
party. Zawoad et al. presented Secure-Logging-as-a-Service
(SecLaaS) for storing virtual machine audit trails in secure
manner, SecLaaS ensures confidentiality of users and protects
integrity of logs by preserving proofs of past logs. Ma and
Tsudik [17] looked into temper-evident logs that are based on
forward-secure aggregating signature schemes.

Xu et al. [18] proposed to use game theory and blockchain
to reduce latency by moving applications to edge servers.
Similarly we are using the geographical proximity to store
audit logs in servers that are close to reduce latency.
Blockchain and audit trails. Sutton and Samvi [19] proposed
a blockchain-based approach that stores the integrity proof
digest to the Bitcoin blockchain. Castaldo et al. [20] proposed
a logging system to facilitate the exchange of electronic
health data across multiple countries in Europe. They cre-
ated a centralized logging system that provides traceability
through an unforgeable log management using blockchain.
Cucrull et al. [21] proposed a system that uses blockchains to
enhances the security of the immutable logs. Log integrity
proofs are published in the blockchain, and provide non-
repudiation security properties resilient to log truncation and
log regeneration. Chi and Yai [22] proposed an ISO/IEC
15408-2 Compliant Security Auditing system using Ethereum
that creates encrypted audit logs for IOT devices. Chen et
al. [23] proposed a Blockchains based system to address
shortcomings in log-based misbehavior monitoring schemes
used to monitor Certificate Authorities (CA). In contrast to
prior work, BlockTrail is implemented by extending a data
access layer of the business application, which only required
modification to access layer, and no other modifications.

VI. CONCLUSION

In this paper, we present BlockTrail; a multilayer blockchain
system that leverages the hierarchical distribution of replicas
in audit trail applications to reduce the system complexity
and increase the throughput. BlockTrail fragments a single
ledger into multiple chains that are maintained at various
layers of the system. We prototype BlockTrail on an audit
trail application and use PBFT protocol to augment consensus
among replicas. We also propose new strategies to mitigate
security risks associated with weak trust model of PBFT. Our
experiments show that compared conventional blockchains,
BlockTrail is more efficient with tolerable delays. In future,
we aim to explore the application of BlockTrail beyond audit
trails including IoT and health care.
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