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Abstract—Malicious webpages are today one of the most
prevalent threats in the Internet security landscape. To under-
stand such problem, there has been several efforts of analysis,
classification, and labeling of malicious webpages, ranging from
the simple static techniques to the more elaborate dynamic
techniques. Building on such efforts, this work summarizes
our work in the design and evaluation of a system that
utilizes machine learning techniques over network metadata
to identify malicious webpages and classify them into broader
classes of vulnerabilities. The system uses easy to interpret
features, utilizes uniquely acquired dynamic network artifacts,
and known labels for rendered webpages in a sandboxed
environment. We report on the success (and failure) of our
system, and the way forward by suggesting open directions for
practical malicious web contents classification.

I. INTRODUCTION

Today, web threats are a great part of the overall security
landscape, where malware authors use web technologies to
effectively distribute their malice and target their victims.
This trend has been reported in the growing number of
malicious scripts and exploits on the web. For example, in
2014 alone, Kaspersky lab reported more than 123 Mil-
lion unique malicious objects, and 1.9 Million of which
were targeted against banking services, which are of the
utmost sensitivity nature [1]. Such trend calls for better
and efficient malware analysis, detection, and classification
algorithms. To this end, antivirus vendors and security threat
analysis providers invest substantial efforts and resources to
develop analysis techniques for addressing this issue. Those
techniques range in the technologies they use, and their
level of sophistication. Broadly, they are classified into three
types: static, dynamic, and hybrid techniques. Despite their
computational efficiency that makes an excellent candidate
solution, static solutions have various drawbacks, and mostly
importantly their low accuracy. On the other hand, dynamic
techniques which achieve high accuracy have computational
cost, preventing them from wide deployment to address the
problem at hand. Hybrid techniques grew to be a better
candidate that capitalizes on strengths of both approaches.

The approach reported in this paper follows the hybrid ap-
proach to malicious web contents analysis and classification.
The hybrid component we follow in this approach makes use
of intelligence and reputation information (static) for better
scalability: deep analysis for dynamic features extraction is

coupled with such static features for better accuracy (than
static alone) and better scalability (than dynamic alone).
The amount of dynamic features collected and used in the
resulting approach is calibrated as a cost parameter.

The broad motivation of the work reported in this paper
is as follows. First, existing techniques for highly accurate
malicious web contents analysis and classification, including
the predecessor of the system reported in this paper, are
computationally expensive. Part of the cost associated with
such systems is not only that they use dynamic analysis
that requires execution of web contents in sandboxed en-
vironments, but that they are also not particularly focused
on reaching the end goal of the problem at hand; analysis
and classification. Those systems often are intended for
providing context of attacks by, for example, understanding
related artifacts through the analysis of individual system
calls and dependencies, or even performing deep packet
inspection. Second, while they provide a promising level
of accuracy, existing systems in the literature for malicious
web contents analysis rely mainly on static features [8],
[19], [20], [24], [26]. While efficient, we theorize that their
reliance on the static features could be a critical point of
attack: those features could perhaps be manipulated to evade
detection. To this end, we envision a scenario where the use
of a mixed set of features, both dynamic and static, could
make it harder for the adversary to evade detection, and
improve both the detection and classification accuracy at
a reasonable additional cost. To reach such goals, various
challenges arise, which we outline in this paper.

The contributions of this work are as follows. First, we
present a system that identifies whether web contents are ma-
licious or benign utilizing a mixed set of dynamic and static
features. Those features are carefully selected and extracted
to achieve scalability properties for the introduced system.
Second, we evaluate the system on a real-world dataset
that contains multiple variants of vulnerabilities, and show
its ability to distinguish between them. Third, by showing
shortcomings of the system—which pertain to other systems
that share the same underlying design concepts with ours,
we highlight open directions worth further investigation.

The rest of this paper is organized as follows §II presents
some details on system-c, which generates the data we
use in A and the ground truth, while §III presents the



TEXT/ TEXT/
HTML HTML
[ [
[ \ | [ \ \
‘ Image ‘ ‘ Text ‘ ‘ Application ‘ ‘ Image ‘ ‘ Text ‘ ‘ App/IS ‘

Figure 1. Two examples of transferred file trees (TFTs). The left-side
example highlights a benign TFT while the right side example highlights
a malicious TFT (through the red branch).

architecture of the A system. §IV presents the evaluation of
A and discusses the results. §V discusses the related work.
Finally §VI presents the conclusions and sheds some light
on future work.

II. SYSTEM-a: DYNAMIC ANALYSIS

The system-« is used for analyzing web contents in a
dynamic fashion, and features extracted from such analysis
are used for classification of webpage pages into benign
or malicious. The system-a crawls websites using an or-
chestrated and virtualized web browser. For each analyzed
webpage, the system maintains records of each HTTP
request-response pair made while rendering that page. The
system applies static and dynamic analysis techniques to
inspect each object retrieved while visiting the webpage, and
monitors any changes to the underlying system to decide
whether the retrieved object is malicious or not.

The basic object analyzed by system-« is called trans-
ferred files (TFs). Determining whether an webpage is
malicious or not depends on the retrieved and analyzed
TFs. system-a labels TFs into benign or malicious, and
if malicious they are labeled based the type of malice
associated with them and uncovered by system-a.

The types associated with files by system-« are one or
more of the following. (i) Injection type, which occures
when a website is compromised, allowing an attacker to add
arbitrary HTML and javascript to the legitimate content of
the site with the purpose of referencing malicious content.
(i1) Exploit type, which implies that an exploit code for a
vulnerability in the browser or browser helper was found—
often used for drive-by downloads. (iii) Exploit kit type,
which is a collection of exploits bundled together and
usually sold in black market. (iv) Obfuscation type, which is
assigned when a TF contains obfuscated code with known
malicious activity behavior. (v) Defacement type, which
occurs when an attacker hacks into a website and replaces
some content indicating that the site has been hacked into.
(vi) Redirection type, which is assigned when a TF redirects
to a known malicious content. (vii) Malicious executable
or archive type, which means that either an executable or
an archive file that contains malicious code was detected
to be downloaded by visiting the webpage. (viii) Server

side backdoor type, which is assigned when a TF shows
symptoms of being a known server-side backdoor script.
The processing of the data of each URL by system-a
results in a tree-like structure (Fig. 1) where each node
represents a TF. Each node stores basic file attributes and
network information (HTTP response code, IP address, and
AS number, etc.). These nodes also contain classification
data from system-a’s deep analysis and we use this as
ground-truth in evaluating our proposed approach, A.

III. A: HYBRID SYSTEM FOR WEB CONTENTS

There are multiple challenges that A tries to address
summarized as follows. (i) Webpages face different types of
vulnerabilities: exploit kits, defacement, malicious redirec-
tions, code injections, and server-side backdoors — all with
different signatures, as mentioned in section II. (ii) Malice
in web contents may not even be the fault of a webpage
owner, as it is the case with advertisement networks that
exhibit such behavior. (iii) The distribution of behavior is
highly imbalanced, with typical dataset having 40 times
more benign objects than malicious ones.

Despite these challenges, we show that A is currently
capable of achieving 96% accuracy, with injection attacks
and server-side backdoors being identified as areas for
performance improvement and future attention. The system
is also capable of identifying the types of detected vul-
nerabilities with exact match in 91% of the cases, with a
difference of 1 and 2 labels in 6% and 3% of the cases.

DESIGN GOALS. To this end, there are two basic ideal goals
for the proposed system A. (i) The main goal of A is to
identify whether a webpage is malicious or not based on
the basic metadata maintained by system-«, without having
to compute any complex and expensive features. (ii) If a
webpage is classified as malicious, the system also aims at
identifying which type of malice it has.

DESIGN. The layout of the system is as follows (with
more details in [18]). The system receives artifacts of
data generated by the system described in section II. The
system works in training and operational modes, described
as follows. The system is trained by labeled webpages, in
which each individual TF is labeled as benign, or malicious.
The system uses the basic meta-data stored in the system,
in addition to a set of simple features generated based on
those attributes. This generation is handled by the feature
generation module which uses IP and WHOIS databases to
acquire information about the IP address and the domain
name of the associated TF. After the feature generation
stage, the data is preprocessed, and features are filtered
using a feature selection module, before the data is sent to
the classification modules. Then, a two-stage classification
procedure is trained based on the preprocessed data.

In the operational mode, for an unlabeled webpage, the
system transforms each TF into a feature vector as done



by the feature generation module in the training phase, and
then the features are preprocessed and filtered based on the
feature selection results from the training phase. The TF
is then labeled with the label most close to it in the vector
space based on a highly accurate ground truth (human vetted
in many cases). The following subsections provide further
details on features selection and classification.

A. Classification Features

To achieve the design goals in section III, A relies on
a rich set of mixed static and dynamic features, and uses
nearly 40 basic features for the classification process. The
features fall in the following broad categories.

META-DATA FEATURES: feature set that includes HTTP
header information, such as HTTP method, response code,
compression mode, etc. This also includes the AS number,
and retrieved file (outcome of libmagic).

URI FEATURES: features derived from the URI associ-
ated with a TF including basic lexical statistics; lengths
(hostname, path and query), dot count, slash count, special
characters ratio and the average path segment length. This
also includes binary features of whether the URI contains
an explicit IP, or an explicit port number.

TF FEATURES: features that we extract from the TF-tree to
capture the relationship between different TFs that belong
to a single webpage. The TF-tree features capture parent-
child host/IP diversity, TF depth, number of children and
the child-parent type relationship.

DOMAIN NAME FEATURES: features derived from the do-
main name of the URI of the TF, including the registrar’s id
and age information, e.g. creation data and expiration date.

IP-BASED FEATURES: features derived from the IP address
associated with the TF, including geo location; country, city
and region, and domain or organization for which the IP is
registered. Two IP prefixes (/24 and /28) are considered as
features to identify networks with malicious activity.

B. Features Preprocessing

After the feature values for each category are inferred, a
preprocessing stage is needed before forwarding this data
to the classifiers for training and testing purposes. The pre-
processing is done based on the feature type. For example,
for numeric features, such as the lexical counts, proper
scaling (normalization) is applied to the feature to keep the
values between 0 and 1. For categorical features such as
the top-level domain name or AS number, among others,
we apply feature binarization, in which a binary feature is
introduced per each possible value, since the feature cannot
be encoded numerically due to the lack of order between
values. This approach has been employed in literature, as
in [19] and has shown promise. However, we note that such
technique would certainly result in high-dimensional feature
vectors that require a scalable classifier suitable for high

dimensionality vectors, albeit a feature selection process
would reduce dimensionality for alternative techniques.

FEATURE SELECTION: Due to the high dimensional feature
vectors, reducing dimensionality through a feature selection
technique would facilitate operational deployment of our
technique. Therefore, in our experiments, we study the effect
of reducing the dimensionality through a y? metric.

C. Classification

Two-stage classification process is employed. The first
classification stage includes a binary classifier that is trained
with all the TFs from benign and malicious samples. We
use an SVM classification algorithm based on Stochastic
Gradient Descent using L1-norm for this stage. In the second
stage, we build another binary classifier for each type of
vulnerability. Each classifier in the second stage is trained
using the malicious TF data only, e.g. the injection classifier
is trained by the data containing (injection TFs versus No
injection but malicious TFs).

We employ this two-stage model because of the limita-
tions of other possible approaches. For example, a multi-
class classifier will not capture the observation that some TFs
are labeled with more than one label. Additionally, we found
that using multiple binary classifiers directly in a single
stage, where each classifier is trained for only one type of
attack—versus all the other benign and remaining malicious
TFs—will lead to lower accuracy and a higher training time.
The low accuracy in this case is due to the higher possibility
of false positives because of using multiple classifiers at
once. Therefore, we propose this two-stage model to filter
out the malicious TFs first using a global classifier, then
identify the type of malice separately.

In operation phase, whenever a webpage is analyzed, the
data of each TF retrieved while visiting the URL are used to
predict whether it is malicious or not. A URL is labeled as
benign if all retrieved TFs were benign by the classification
algorithm. Then, the type of malice is identified through the
second stage if the TF was labeled as malicious.

IV. EVALUATION

We present the evaluation and analysis of A. We give an
overview and description of the dataset with the evaluation
procedure and metrics. Then, we introduce the performance
of the binary classification and label prediction, followed by
the effect of feature selection on the system accuracy.

DATASET. The dataset we used consists of 20k webpages,
10k each of “malicious” and “benign” types. These URLs
were randomly selected from system-a operational history
of Internet-scale crawling. As mentioned earlier, system-«
labels the webpages using sophisticated static and dynamic
analysis techniques, and hence we consider such labels as
our ground truth labels. Analyzing the URLs of the dataset
yields 800k benign TFs and 20k malicious TFs. Each web-
page contains about 40 TFs on average. For the malicious



Frequency (Number of webpages)

0
0 01 02 03 04 05 06 07 08 09 1
Ratio of malicious TFs to the total number of TFs per webpage

Figure 2. Malicious TFs per malicious webpages
Table I
DISTRIBUTION OF MALICE AMONG THE TFs
Type # samples Type # samples
Injection 10696 Injection/exploit 181
Exploit kit 5102 Archive 31
Redirection 1657 Backdoor 25

Exploit 1030
Executable 800
Defacement | 432

Injection/redirection 15
Injection/defacement | 5
Injection/obfuscation | 2

webpages, a histogram of the percentage of the number
of malicious TFs per each malicious webpage is shown in
Fig. 2. The figure shows that for most malicious webpages,
less than 10% of the retrieved TFs are malicious. This
confirms the intuition we have for building the classifiers
based on individual TFs.

The system-« labels each TF according to type of malice
it uncovered. Note that a malicious TF may be labeled with
more than one label at the same time. That is a reason
a classifier was built for each malice type in the label
prediction module. The distribution of vulnerabilities among
the malicious TFs can be illustrated in detail through Table I.

A. Evaluation Procedure and Metrics

The evaluation of the system was conducted using 10-fold
cross-validation. For consistency, the dataset was partitioned
randomly in a way that guarantees that the distribution of
number of TFs per webpage is roughly maintained, so that
the total number of TFs per partition is almost the same.
The performance metrics are considered at TF and webpage
granularity, with more focus on the latter since this is the end
system goal. Recall that a webpage is labeled as malicious
if any of its TFs was labeled by the classifier as malicious.
The metrics considered for the evaluation are mainly the
false positives rate, the false negatives rate, and the F1-score,
defined in terms of the precision and recall. Precision and
recall are as in the literature.

B. Binary Classification Performance

We start by describing the results of the first classification
stage, which aims to identify whether a webpage is malicious
or benign, only. Table II enumerates the performance metrics
at both TF and webpage granularity, showing an overall
result of 7.6% FN rate and 6.3% FP rate for the webpage
results. The reason for having a 14.7% FN rate on the
TF-level is that simple metadata may not be indicative for
all types of TF malice behavior. Additionally, compared
to previous literature, the TF results are consistent with
respect to the fact that our TF records dataset is highly
imbalanced. Literature studies showed that as the data gets
highly imbalanced, the accuracy degrades, e.g. 25% FN rate
at a ratio of 100:1 of benign to malicious URLs [20].

Table 11
BINARY CLASSIFICATION RESULTS

[ [[ Prec. Recall F-score FP FN |
TF-level 0.390 0.852 0.530 0.0314 0.147
page-level 0.935 0.924 0.930 0.063 0.076

To understand how well the detection performs, Fig. 4
shows the detection rate per each vulnerability/attack type at
the TF-level, which describes the ratio of the TFs labeled as
malicious successfully. Note that the “injection” and “server
side backdoor cases” were most detrimental to overall per-
formance. This is made clear in Tab. III which provides
overall performance without those problematic instances,
resulting in 2.5% FP rate and 4.8% FN rate overall.

Table 1T
BINARY CLASSIFICATION W/O “INJECTION”

[ [[ Prec. Recall F-score FP FN ]
TF-level 0.527 0.873 0.657 0.0153 0.126
page-level 0.948 0.951 0.949  0.0257 0.048

C. Label Prediction Performance

After a TF is labeled as malicious by the system, the
system labels it according to the type of attack/malice it
carries by the label prediction module described earlier in
Sec. III. In this section, the results of this module are
presented. The main metric we used for the evaluation of
the label prediction is the number of different labels between
the ground truth and the predicted ones. As an example for
illustration, if the ground truth is {Injection}, and the system
labeled the malicious TF as {Injection, Exploit}, then this
is considered a difference of one. If the predicted label was
only {Exploit}, this is considered a difference of two, since
two changes are necessary to make the prediction correct.
Fig.3 illustrates the CDF of the label difference metric. As
the figure clearly shows, the median of the difference in label
predictions is zero. In fact in more than 90% of the cases,
there was no difference between the predicted labels and the
ground truth, and in only about 3% of the cases there was
a difference of two labels.
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Figure 4. Detection rate per TF vulnerability type for various malice types

We evaluate the capability of each label prediction clas-
sifier (figures omitted). In this experiment, the server side
backdoor classifier had the highest miss-label rate, perhaps
due to the few samples of server side backdoors in the
dataset (Table I). Also, both the exploit and exploit kit
classifiers have high miss-label rates as well, which suggests
that new exploit attacks that the system did not specifically
learn about may not be directly easy for the system to infer.
With respect to the wrong-label rate, one interesting obser-
vation is that the injection classifier had the highest wrong-
label rate. This could be because most of the malicious TFs
in the dataset are Injection attacks (Table I), which could
have resulted tendency towards labeling malicious TFs as
injection due to the imbalanced training dataset.

D. Feature Selection

Due to the number of categorical features we have, we
have high dimensional vectors result due to binarization,
which affects scalability. To address this issue, we employ
feature selection. Using the x? score we calculated for each
feature, we observed that the feature scores considerably
vary, ranging from 107> to 10°. This may suggest that
half of the features may not be very important for the
classification. We confirmed that by studying the effect of the
number of features on detection in A. In this confirmation
(omitted), we show that the performance increases rapidly
till it reaches a turning point of a stable F-score.

V. RELATED WORK

Various efforts have been on the problem at hand, al-
though differing from our work in various aspects, including

Table IV
DISTRIBUTION OF GENERATED FEATURES

Feature Category [ Number of Features

Meta-data based 18850
URL-based 378740
TF tree-based 157
Domain name-based 419
IP-based 65153

features richness, quality of labels, and their context. Most
closely related to our work are the works in [8], [19], [20],
[24], [26], although differing in using static analysis-related
features in reaching conclusions on a webpage. On the other
hand, A relies on utilizing simple features extracted from the
dynamic execution of a webpage and loading its contents in
a sandboxed environment, with the goal of incorporating that
as a tiered classifier in system-c.

Some related work using structural properties of URLSs
in order to predict malice include the works in [11], [19],
[27] for email spam, and in [7], [21] for phishing detection.
Additionally, using domain registration information and be-
havior for malware domain classification was explored in
[15], [19], [25]. Related to that is the work on using machine
learning techniques to infer domains behavior based on DNS
traces. Bilge et al. proposed Exposure [6], a system to detect
malware domains based on DNS query patterns on a local re-
cursive server. Antonakakis et al. [3] functions similarly but
analyzes global DNS resolution patterns and subsequently
creates a reputation system for DNS atop this logic [2].
Gu et al. [12]-[14] studied several botnet detection systems
utilizing the same tools of DNS monitoring. Dynamic mal-
ware analysis and sandboxed execution of malware were
heavily studied in the literature, including surveys in [9],
[10]. Bailey et al. [4] and Bayer et al. [5] have focused on
behavior-based event counts. Feature development has since
advanced such that malware families can now be reliably
identified [17] and dynamic analysis can be deployed on
end hosts [16]. Finally, network signature generation for
malicious webpages is explored in [22], [23] for drive-by-
download detection.

VI. CONCLUSION AND OPEN DIRECTIONS

This paper presented A, a system that uses machine
learning over simple network artifacts that are inferred
during dynamic webpage execution. A’s goal is to detect
whether a webpage is malicious or not, and to identify the
type of malice if the webpage was found malicious. Under
cross-validation and a dataset that spans different types of
attack behavior, the system was able to detect malicious
webpages with an accuracy of 93% identifying injection and
derver-side backdoor vulnerabilities as the main areas re-
quiring detection improvement. Excluding injection samples
from the dataset has resulted in an accuracy reaching 96%.
Additionally, the malice labeling module was able to detect
the label(s) of malicious TFs exactly in about 91% of the



cases, with a difference of one and two labels in 6% and
3% of the cases respectively.

Several directions can be explored. (i) Since many of
the features have a dynamic nature over time, e.g., IP,
URI’s, etc., one direction is to explore adaptive mechanisms
to capture such dynamic changes over time. (ii) Further
studies need to be focused on enhancing the accuracy models
presenting in this paper to detect injection and server side
backdoor attacks, in addition to identify exploit attacks, by
incorporating context information. (iii) Scoring of malice is
worth investigating, not as a binary class but as a degree of
severity, and ways to incorporate that in the classifier. (iv)
While generated by system-c, they are not used; payload
and content-based features derived from Javascript as in [8],
[26], or flow information features as in [26] can be extracted
and utilized for improving the accuracy of classification.
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