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Abstract—Cardinality estimation has become an essential
building block of modern network monitoring systems due to
the increasing concerns of cyberattacks (e.g., Denial-of-Service,
worm, spammer, scanner, etc.). However, the ever-increasing at-
tack scale and the diversity of patterns (i.e., flow size distribution)
will produce the biased estimation of existing solutions if apply a
monotonic hypothesis for network traffic. The most representa-
tive solution is virtual HyperLogLog (vHLL), which extended the
proven HLL, a single element cardinality estimation solution, to
a multi-tenant version using a memory random sharing and noise
elimination approach. In this paper, we show that the assumption
made by vHLL’s does not work for large-scale network traffics
with diverse flow distributions. To resolve the issue, we propose
a novel noise elimination method, called Rank Recovery-based
Spread Estimator (RRSE), which is tolerant to both attack and
normal traffic scenarios while using limited computation and
storage. We show that our recovery function is more reliable than
state-of-the-art approaches. Moreover, we implemented RRSE in
a programmable switch to show the feasibility.

Index Terms—Network Anomaly Detection, Cardinality Esti-
mation, Sketch, Programmable Switch

I. INTRODUCTION

Cardinality estimation is a crucial primitive of network
security function to address various cyberattacks, including
Denial-of-Service (Dos), worm, spammer, scanner, among
others. The main challenge is to estimate a large number of
distinct elements under computation and storage constraints.
As of the second quarter of 2020, Internet users are 4.8 billion,
a 1,239% of growth from 2000 [1]. The massive user base not
only generates a massive amount of data with a high diversity
but also increases the complexity of the used network with
their devices. Moreover, the diverse network patterns (i.e.,
normal and attack traffics) existing in the modern network
require cardinality estimation solutions to be adaptive and
efficient in terms of memory management.

To address the aforementioned challenges, scalable and
memory-efficient measurement data structures, such as
sketches were proposed. Unlike a multiplicity estimation that
counts the frequency of an identical element [2]–[9], the
cardinality estimation sketches count the number of distinct
elements [10]–[25] and are classified into two types, bitmap-
based [12]–[24] and register-based approaches [10], [11].
The major drawback of most bitmap-based approaches is the
linearly increasing counting capacity, which motivated later
solutions like LogLog [10] and HyperLogLog to scale up
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the counting range with adaptive bitmap [26]. Especially,
HyperLogLog (HLL) [11] is widely adopted in practice owing
to its solid estimation theory and scalability.

Driven by the applications’ increasing complexity, demands
for multi-tenant cardinality estimation (i.e., counting the num-
ber of distinct destination IP addresses for every source IP ad-
dress, spreader detection hereafter) are increasing. A straight-
forward solution to the multi-tenant cardinality estimation
problem is to use a dedicated HLL encoder for each spreader,
although that requires too much memory to be practical. For
memory efficiency, several sketch-based solutions that enable
multi-tenant counting with a memory sharing strategy were
proposed [9], [11], [16], [18], [19]. Namely, a HLL-based
solution of a virtual HLL (vHLL) [27] has been shown to
be more scalable and accurate than other approaches, such
as PCSA [19], PMC [9], MultiresolusionBitmap, [18], and
Compact Spread Estimator (CSE) [15]. vHLL follows HLL’s
theory to perform each spreader’s cardinality counting and
enables multi-tenant estimations by allowing spreaders to share
a universal memory space randomly. This design will naturally
introduce a noise issue that has to be handled carefully.
Our key observation is that vHLL applies a universal noise
(an identical value) for all different-sized spreaders, which
we found to be inaccurate in an attack traffic scenario (see
section IV-D), where a massive number of medium and high
spreaders exist in the network traffic (i.e., abnormal flow
distribution). Moreover, the vHLL cardinality estimation in a
normal traffic scenario can be improved due to the coarse noise
estimation strategy.

In this paper, we design a novel noise elimination algorithm
for HLL-based multi-tenant cardinality counting schemes,
called the Rank Recovery-based Spread Estimator (RRSE).
RRSE uses a global register array for estimating millions
of spreaders and applies a random register sharing tech-
nique that is commonly adopted in multi-tenant counting
algorithms [2], [3], [15], [16], [27]–[29]. However, unlike
the previous approaches that remove a universal noise (i.e.,
global average) for different-sized flows, RRSE focuses on
the precise noise estimation and elimination for every single
spreader with negligible overhead. More importantly, our new
concept of rank distribution recovery manipulates the recorded
intermediate values (i.e., rank values), which is fundamentally
different from state-of-the-art approaches that eliminate noise
after the intermediate value-based estimation [15], [16], [27],



[28]. To do so, we collect and recover a rank distribution of
the local registers—a register value distribution of a spreader—
by leveraging the distribution of global registers; a universal
random-sharing register array. Then, the recorded/tainted rank
distribution will be recovered at rank-level (i.e., fine-grained
recovering). Eventually, our estimator performs cardinality
estimation with the recovered rank distribution without con-
sidering the noise. Our experimental results show that RRSE
can achieve more precise estimation than vHLL and MCSE
with attack and normal traffic scenarios while requiring a
negligible overhead by performing the recovery function using
a dynamic programming technique. We further show that our
RRSE can be embedded in a programmable switch to support
future network systems.
Contributions. In this paper, we make the following contri-
butions:
• We present a rank distribution recovery technique, a new

direction for noise elimination in multi-tenant spread
counting algorithms. Our technique carefully recovers
tainted intermediate data (i.e., recorded rank distribution)
independently for each spreader, instead of the post-
hoc noise reduction approach adopting a coarse universal
noise for all spreaders.

• We provide an error bound analysis of our algorithm and
prove our rank distribution recovery is unbiased.

• We show comparatively trace-based simulation results
with two real-world datasets of different distributions to
demonstrate the unbiased estimation of our algorithm.
Through extensive experiments, we show that our ap-
proach provides a precise noise reduction for all ranges
of spreaders than state-of-the-art algorithms, regardless of
traffic distributions.

• We designed and implemented a spreader detection
framework in a programmable switch (Tofino) to show
its feasibility. Moreover, a comprehensive analysis of
resource consumption and latency is conducted.

II. BACKGROUND AND MOTIVATION

In this section, we start with a background description,
namely HyperLogLog [11], which is a cardinality estimation
scheme that has been widely used for spread estimation. Then,
we explore advanced solutions that allow the multi-tenant
spread estimation demanded by modern network monitoring
systems. Next, we discuss the limitations of state-of-the-art
solutions. Lastly, we describe the inspirations behind our
approach. We note that our work focuses on not only achieving
better accuracy but also a tolerant estimation under different
network scenarios (i.e., normal and attack traffics).
Cardinality estimation. HyperLogLog (HLL), as a logarithm-
based cardinality counting algorithm, has been proven to be
accurate and scalable in practice [30]. It uses multiple registers
to encode distinct elements. HLL is based on two techniques.
The first technique is rank, which is the position of the
leftmost 1’s bit in the hash value of a distinct element. For
instance, the rank of 00001001 is 5. The other technique is
called stochastic averaging, which improves the robustness

of the counting. When encoding, all destination IPs are split
uniformly into m registers (i.e., rank array M []) using a hash
function, and each register maintains the maximum rank value
in M [i]. That is:

M [i] = max{ρ(x),M [i]} (1)

where ρ(x) is the rank of hash value x. To estimate, HLL
calculates a normalized harmonic mean of all registers as

n̂m = αm ·m2 · (
m∑
i=1

2−M [i])−1, (2)

where αm is a constant determined by m.
Multi-tenant cardinality estimation. HLL was designed to
count a single spreader on scale. However, because of the
increasing complexity of the deployment context, the multi-
tenant spreader estimation became crucial. A straightforward
solution then is to use dedicated registers for each spreader,
but that requires a massive memory. To resolve this issue,
vHLL [27] suggested maintaining a global register array for
multiple spreaders, and each spreader uses only a random
portion of the registers in the array. A register can be assigned
to spreaders repeatedly. In vHLL, the registers’ selection of
each spreader follows a random behavior (i.e., random memory
sharing). We note the random memory sharing technique is
widely used in designing memory-efficient data structures (i.e.,
sketch) [2], [3], [15], [16], [28], [29]. However, the major
challenge is how to eliminate the noise caused by the memory
sharing strategy?
State-of-the-art noise handling solutions. In terms of noise
elimination, vHLL and MCSE [16] are state-of-the-art works
in multi-tenant spread estimation. The major difference be-
tween the two schemes is that vHLL is an exponential counter
that shares memory at a register level, whereas MCSE is a
linear counter sharing memory at a bit level. However, they
both maintain a global array and consider the average of global
estimation as a local noise, which will be eliminated from a
local estimation value. To explain, let M [1 . . .m] be the global
register array of vHLL, n be the summation of all spreaders’
cardinalities, and nf is the cardinality of a flow f . In vHLL, all
other flows n−nf is considered as noise that is distributed in
M [] following binomial distribution Bino(n− nf , 1

m ). When
each spreader uses s shared (virtual) register array that is
significantly smaller than m (s � m), the expectation of the
noise (random variable X) in M [i] is given as E(X) =

n−nf

m .
Then, the noise of s registers is given as E(ns − nf ) =
s · E(X) = s

n−nf

m . Since V ar(
ns−nf

E(ns−nf )
) approaches zero

when s is sufficiently large [11], E(ns − nf ) ≈ ns − nf .
Hence ns − nf = s

n−nf

m .

nf =
m · s
m− s

· (ns
s
− n

m
) (3)

vHLL replaces ns and n with HLL’s (n̂s, n̂) to estimate n̂f .
Therefore,

n̂f = n̂s ·
m

m− s
− n̂ · s

m− s
, (4)
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(b) Normal Traffic

Fig. 1: Comparison of actual noise, vHLL’s noise estimation,
and our RRSE’s noise estimation using real-world normal and
attack network traces using 2Mb memory.
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Fig. 2: A novel representation of cardinality estimation accu-
racy, namely rank (register) value distribution. The harmonic
mean of all rank values in the distribution is the final esti-
mation of HLL (see Eq. (2)). Original rank distribution is a
noise-free rank value distribution. Closer distribution to the
original distribution results in more accurate estimation.

the former is the estimated cardinality held by s registers
before eliminating a noise and the latter is the noise estimated
by vHLL. We note that n̂ is the estimated cardinality of the
global register array (M []), s is the number of registers for a
spreader, and m is the global array size. Simply put, vHLL
assumes that the per-register noise is the average cardinality of
global registers ( n̂

m−s , where s� m), and the virtual register
array (s) noise for a spreader can be scaled up from the per-
register noise, as n̂

m−s · s (i.e., the latter term in Eq.(4)).
Our observations. As discussed above, vHLL’s noise estima-
tion is based on the cardinality estimation of the global register
array (i.e., n̂) regardless of individual spreaders’ noise level.
Since the noise increment of individual spreaders has minor
effects to the overall noise estimation result, vHLL’s noise
estimation will lead to an underestimated noise, in general.
Moreover, the estimated noise in vHLL, as a universal noise
(a single value), will be subtracted from every spreader’s
estimation even though the noise varies in different spreaders.
As Fig. 1 shows, the actual noise varies for different-sized
flows, whereas the noise estimated by vHLL is negligibly
small for medium and high spreaders. (1) We observed that
medium and high spreaders increase the noise level of all
spreaders due to the register sharing strategy and memory
constraint. Accordingly, the noise level increases significantly
when a massive amount of medium and high spreaders arrive
simultaneously (i.e., attack traffic) compared to the normal

TABLE I: Notation
M [] global register array Cm[] global rank distribution
m size of M [] Cs[] local rank distribution
Ms[] local register array ˆCf [] recovered Cs[]
s size of Ms[] n̂f estimated cardinality
b size of a register Hash() hash function
r max rank value (=2b − 1) R[] distinct integer array
w r bits of Hash(f) ρ(w) rank calculation function

traffic, as shown in Fig. 1. (2) We also observed that most
of the memory was occupied by small spreaders in both
normal and attack scenarios. These two observations combined
show why vHLL gives the biased overestimation. That is,
the estimated noise of vHLL, which is a global average, is
too small for medium and high spreaders. We note that the
concept of assuming a global average as a local noise is used
not only in vHLL, but a series of multi-tenant estimation
algorithms [5], [15], [16]. Compared to these algorithms, our
algorithm provides more precise noise reduction across all
ranges and more tolerant spreader estimation regarding traffic
distribution, as shown in Fig. 1.
Our Approach. In this work, we demonstrate a different
approach to deal with the noise caused by memory sharing.
Our method, called the Rank Distribution Recovery Function,
performs a fine-grained noise estimation and elimination for
every single spreader, which is fundamentally different from
vHLL that applies a universal noise (i.e., identical value) to all
spreaders. And unlike vHLL that performs noise elimination
after estimation, we analyze the distribution of the recorded
intermediate values (i.e., tainted rank values due to memory
sharing) of a spreader, then recover them to the original ones
(i.e., clean rank values; no memory sharing). Then, we use the
cleaned intermediate data to estimate the spreader’s cardinality
without worrying about noise.

To recover the original rank distribution, we obtain a
rank distribution from the tainted rank values of a spreader
(hereafter, local rank distribution). Then, we leverage the
global rank distribution obtained from the entire memory to
recover the local rank distribution at a fine-grained rank level
(see section III.D for details). Subsequently, we can leverage
the recovered rank distribution to perform HLL estimation
without considering the noise. Fig. 2 shows an example of rank
distribution recovery. We note that the closer the recovered
rank distribution to the original rank distribution, the more
successful the rank recovery or noise elimination is. As shown
in Fig. 2, the RRSE rank recovery results match well the
original rank distribution.

III. RANK RECOVERY-BASED SPREAD ESTIMATOR(RRSE)
In this section, we introduce RRSE, a multi-tenant car-

dinality estimation algorithm based on the rank distribution
recovery technique. We describe our data structure first, fol-
lowed by the encoding and decoding algorithms. Next, we
present the Rank Distribution Recovery, which is our main
contribution. Finally, a theoretical analysis of our scheme, in
terms of estimation bias and variance, is given. Table I shows
the notations used in this paper.



Fig. 3: RRSE: Data Structure with encoding and decoding
processes. M [] is the global register array, Ms[] is a local
(virtual) register array, Cm[] is the global rank distribution,
and Cs[] is a local rank distribution. Cm[] is updated on-the-
fly and Cs[] is retrieved when decoding. The decoding function
Ĉf requires sumpn and sumĈf

, which are an accumulative
function realized by dynamic programming.

A. Data Structure: Random Register Sharing
As shown in Fig. 3, RRSE maintains a global register array,

M [], of which the size is m and each register is b bits. For
memory efficiency, the global array allows register random
sharing by using a hash function Hash(), which means that
each register can be randomly shared by multiple spreaders.
Meanwhile, each spreader is assigned s registers, namely the
local (virtual) register array Ms[], where s is much smaller
than m.

B. Encoding
Algorithm 1 demonstrates the source IP (srcIP)-based

encoding process. For each dstIP associated with a srcIP,
we first hash the dstIP, and then use the hashed value (x) to
derive two intermittent variables: i and w (line 3), where i is
the first c = log2(s) bits of x (i.e., i ∈ [0, s− 1]) that are for
randomly selecting the a register among s registers assigned
to srcIP. To locate the selected register in the global array
(M [idx]), RRSE hashes srcIP after XOR with R[i], where
R[] is a constant and distinct integer array (line 4). Then, the
next r = 2b − 1 bits of x (i.e., w) are used to calculate an
encoding value, namely rank (ρ(w)), which is the number of
consecutive 0’s at the end of w plus one. Finally, M [idx]
is updated only if ρ(w) is larger than M [idx]. We note that
encoding of both RRSE and vHLL follows the theory of HLL,
although RRSE applies a novel noise removing technique that
recovers a local register array (i.e., encoded values of a srcIP)
by referencing a global rank distribution (Cm[]), which is the
distribution of the encoded rank values in the global array M [].
To simplify and speed up the decoding process, RRSE records
Cm[] on the fly (line 7) with a negligible memory overhead
(O(r), r ∈ [1, 16]).

C. Decoding
Algorithm 2 shows RRSE’s decoding proceess. To decode

a spreader srcIP, RRSE retrieves the encoded rank values

Algorithm 1: Encoding
1 forall srcIP, dstIP← pktf do
2 x← Hash(dstIP);
3 i←< x1x2 · · ·xc >2; w ←< xc+1xc+2 · · ·xc+r >2;
4 idx← Hash(srcIP⊕ R[i]);
5 if M [idx] < ρ(w) then
6 /*Record Global Rank Distribution on the fly*/
7 Cm[M [idx]]--; Cm[ρ(w)]++;
8 M [idx] := ρ(w);
9 end

10 end

Algorithm 2: Decoding
1 Function DECODING(srcIP):
2 for i = 1 to s do
3 idx := Hash(srcIP⊕ R[i]);
4 Cs[Ms[idx]] += 1; /*Retrieve local rank dist.*/
5 end
6 Ĉf [] = RANK DIST RECOVERY(Cs[], Cm[]);
7 n̂f := αss

2(
∑r

i=0(Cf [i]2
−i))−1;

8 /*Low or high spreader correction*/;
9 if n̂f ≤ 5

2
s then

10 n̂f :=LINEAR COUNTING(Ms); [17] for details
11 end
12 if n̂f > (1/30)× 232 then
13 n̂f := −232 log(1− n̂s/2

32); [27] for details
14 end
15 return n̂f

16 Function RANK DIST RECOVERY(Cs[], Cm[]):
17 /* Dynamic Programming */
18 Set Ĉf [0 . . . r] = 0, sumPn = 0, sumĈf

= 0;
19 for i = 0 to r do
20 sumPn = sumPn + (Cm[i]− Cs[i])/(m− s);
21 Ĉf [i] = (Cs[i]− Cm[i]−Cs[i]

m−s
· sumĈf

)/sumPn ;
22 sumĈf

= sumĈf
+ Ĉf [i];

23 end
24 return ˆCf []

from its local register array (Ms[]) and obtains the local rank
distribution (Cs[]) (lines 2-5). We note that this is a low-cost
process because Ms[] and Cs[] are small. As demonstrated in
Fig. 2, we observe that the rank distribution of Ms[] (Cs[])
is inappropriately shifted from the original distribution (Cf [])
that is recorded without noise or register sharing. The shift
occurs because the registers are not dedicated to a single
spreader but shared by multiple spreaders. Therefore, some
rank values will be higher than the ground truth since the
registers are always updated by a larger rank value. As a result,
the rank distribution Cs[] biases to higher rank values, which
results in an overestimation of the cardinality. Based on this
observation, RRSE aims to recover Cs[] to an ideal status ˆCf [],
where ˆCf [] ≈ Cf [] (lines 16-24; see section III-D), and then
uses the recovered ˆCf [] to estimate the cardinality (lines 6-7),

n̂f = αss
2(

r∑
i=0

Ĉf [i]2
−i)−1 = αss

2(

s∑
j=1

2−Ms[j])−1, (5)



where α16 = 0.673, α32 = 0.697, α64 = 0.709, and αs =
0.7213/(1 + 1.079/s) for s ≥ 128 [11]. Finally, as in
HLL [11], RRSE performs estimation corrections for low
spreaders (lines 9-11) and high spreaders (lines 12-14).

D. Local Rank Distribution Recovery

Here, we describe the rank distribution recovery function,
which is a probabilistic approach for calculating ˆCf [] using the
recorded rank distribution Cs[] and the global rank distribution
Cm[] (Algorithm 2, lines 16-24). Fig. 3 also gives an overview
of the decoding process. Given a flow f ’s rank distribution
(Cs[]), we infer a rank’s frequency of the original rank
distribution from the lowest to the highest rank, respectively
(line 19). For each rank i, we calculate the original frequency
of rank i ( ˆCf [i]) (line 21), which is the realization of Eq. (6).
In our algorithm, sumPn denotes the total number of rank
0 to i over the global register array excluding spreader’s
registers. Then, sumĈf

denotes the total count of previous
lower ranks of a local register array. sumPn

and sumĈf

are accumulated with dynamic programming. We note that
both time and space complexities of RANK DIST RECOVERY

are O(r), where r is a maximum value of a register which
is small (i.e., 7, 15). Moreover, the overall rank distribution
recovery process is lightweight since Cs[] can be retrieved with
negligible overhead and Cm[] is recorded on the fly. Theorem 1
shows the processes of deriving Ĉf [].

Theorem 1. Let i be a random variable that is recorded in
our universal register array (M []), where i ∈ [0, r] and r is
the range of rank values. Also, let Cm[i] be the frequency
of rank i in M [], Cs[i] be the frequency of rank i in a
spreader’s registers (Ms[]), where Ms[] ⊂ M []. Let Pn[i]
be the probability of rank i over the global register array
excluding spreader’s registers. Assume M and Ms follow the
same distribution. Then,

Cf [i] =
Cs[i]− Pn[i]

∑i−1
lo=0 Cf [lo]∑i

lo=0 Pn[lo]
. (6)

Proof. First, let X be the event that an original rank value of
a register in Ms[] (low) is overwritten by a higher rank value
i of M [], then the probability of X is

P (X) =
Cf [lo]

s
· Pn[i], (7)

where Pn[i] = Cm[i]−Cs[i]
m−s , and m, s are the size of M []

and Ms[], respectively. P (X) defines the probability that a
lower rank value low recorded in a flow’s local registers
be overwritten by a higher rank value i (noise) from global
registers due to memory sharing. The former is the fraction
of rank value low supposed to be recorded in local registers
without the overwriting issue. Then, it is multiplied by Pn[i]
(i’s probability in the global register) assuming that M and Ms

have the same distribution, which represents the probability of
the overwriting event. Here, Cs[i] is subtracted from Cm[i] for
improving accuracy.

Similarly, let Y be the event that an original value of a
register in Ms[] (i) is overwritten by a higher rank value high
of M [], then Y ’s probability is

P (Y ) =
Cf [i]

s
· Pn[hi]. (8)

Thus, the times where all smaller ranks become rank i in Ms[]
is given by

Hi =

i−1∑
lo=0

P (X) · s = Pn[i] ·
i−1∑
lo=0

Cf [lo], (9)

and the times where the current rank i became higher rank in
Ms[] is calculated by

Li =

r∑
hi=i+1

P (Y ) · s = Cf [i]

r∑
hi=i+1

Pn[hi]. (10)

The observed frequency for rank i (Cs[i]) should be equal to
Cf [i], but this is not the case due to register sharing. Instead,
Cs[i] can be seen as Cf [i] (true local rank distribution) plus Hi

in Eq. (9), the number of registers with lower ranks overwritten
by rank i, minus Li in Eq. (10), the total amount of rank i’s
register that has been overwritten as a higher value. Hence,

Cs[i] = Cf [i] + Pn[i]

i−1∑
lo=0

Cf [lo]− Cf [i]
r∑

hi=i+1

Pn[hi] (11)

Finally, we can derive Cf [i] as

Cs[i]− Pn[i]
i−1∑
lo=0

Cf [lo] = Cf [i] · (1−
r∑

hi=i+1

Pn[hi]),

Cf [i] =
Cs[i]− Pn[i]

∑i−1
lo=0 Cf [lo]

1−
∑r
hi=i+1 Pn[i]

.

Let ˆCf [i] be a variable to estimate Cf [i], given as,

≈
Cs[i]− Pn[i]

∑i−1
lo=0 Cf [lo]∑i

lo=0 Pn[lo]
= Cf [i]. (12)

We note that when estimating ˆCf [i], RRSE use estimated
Ĉf [lo] instead of the unavailable ground truth Cf [lo]. Since
ˆCf [i]s’ estimations follow the order i = 0, 1, . . . , r, Ĉf [lo]s

(lo ∈ [0, i−1]) are available for ˆCf [i] with dynamic program-
ming.

E. Bias and Standard Error

Finally, RRSE’s estimation is shown to be unbiased, and
the upper bound of the standard error is derived.

Theorem 2. Let n̂s be the estimation of RRSE using s
shared registers, and nf be the estimation without the register
sharing. If E(Ĉf [i]) ≈ Cf [i], then E(n̂f ) = E(nf ), which
means our estimator is unbiased.



Proof. Given Eq. (2), Eq. (5), and Eq. (6),

E(n̂f ) = E(
αs · s2∑r

i=0 Ĉf [i]2
−i

) ≈ E(
αs · s2∑r

i=0 Cf [i]2
−i )

= E(
αs · s2∑m
i=1 2

−M [i]
) = E(nf ). (13)

Theorem 3. Given an arbitrary flow f with a cardinality
estimation of n̂f , the upper bound of RRSE’s relative standard
error is

StdErr(n̂f ) =

√
V ar(n̂f )

nf
<

1.04√
s

+

√
ε

nf
, (14)

where the error bound is defined as

ε =
αs · s2∑r

i=0 Cε[i]2
−i (15)

Proof. Given s shared registers for a flow f , the HLL-based
cardinality estimation ns may include a noise nn due to the
register sharing. Let n̂f be the estimation of RRSE with rank
distribution recovery (i.e., noise reduction function). Then, the
variance of the n̂f is

V ar(n̂f ) = V ar(ns − nn)
= V ar(ns) + V ar(nn)− 2 · Cov(ns, nn)
< V ar(ns) + V ar(nn). (16)

Let ε be the noise worst case. Then,

V ar(n̂f ) < V ar(ns) + ε2. (17)

Accordingly,

StdErr(n̂f ) =

√
V ar(nf )

nf
<

√
V ar(ns) + ε2

nf
(18)

Since the relative standard error of HLL (
√
V ar(ns)

nf
) is 1.04√

s
,

the bound of the standard error of RRSE is

StdErr(n̂f ) <

√
V ari(ns)

nf
+

ε

nf
=

1.04√
s

+
ε

nf
. (19)

As described in Theorem 1, the probability of a flow
with a rank value i to overwrite another flows’ registers is
given as Pn[i] =

Cm[i]−Cs[i]
m−s , thereby the number of registers

that were overwritten by rank value i (i.e., noise) follows a
binomial distribution Bino(s, Pn[i]). Accordingly, the number
of overwritten registers is Cε[i] = binoinv(σ, s, Pn[i]), where
binoinv() is binomial inverse cumulative distribution function.
To this end, we can calculate ε using the HLL’s estimation (i.e.,
Eq. (2)) and Cε[] as ε = αs·s2∑r

i=0 Cε[i]2−i .

IV. EVALUATION

In this section, we conduct extensive evaluations of RRSE,
including (1) comparing the experimental results of RRSE’s
performance with our theoretical error bound analysis, (2)
evaluating the accuracy of RRSE by varying the memory and
traffic distribution (i.e., attack and normal), (3) comparing
the performance of RRSE with two state-of-the-art schemes,
namely vHLL [27] and MCSE [16]. We finally discuss the
cost of RRSE.
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Fig. 4: Spreader size distribution of attack and normal traffic

TABLE II: The statistics of datasets

Dataset Witty Worm Traffic Normal Traffic
Number of spreaders 20,906 1,470,442
Total connections 192,265,216 16,322,155
Avg spreader size 9,196 11
Largest spreader size 7,266,976 6,859,211

A. Dataset Description
We use both attack and normal traffic datasets in our evalu-

ation. The Witty Worm trace [31] is used as attack traffic, and
it has a relatively small number of devices but a large spreader
size on average. The normal traffic is an ISP trace [32], where
many devices are attached to the network with a relatively
small spreader size. Fig. 4 shows the spreader size distribution
of two datasets. As shown, the normal network trace follows a
heavy-tail distribution, a general case of most networks, while
the attack trace has a uniform distribution for different sized
groups; alludes to a large number of compromised devices
where each of them recursively generates many connections.
Table II summarizes the statistical details of the two datasets.

B. Standard Error and Variance
To verify our analysis, we compare the theoretical and

experimental relative standard errors (Eq. (14)) of RRSE using
0.5 Mb and 2 Mb memory sizes. As shown in Fig. 5, RRSE’s
experimental standard error is better than the theoretical
error for spreaders greater than 1,000 regardless of traffic
distribution and memory usage (i.e., correctness), because
the theoretical error bound is not tight. Here, we note that
RRSE’s estimation is only for medium or high spreaders
(i.e., ≥ 2

5s). Similar to HLL, RRSE takes advantage of a
linear counting algorithm for low spreader estimation [17].
As shown, we can observe a clear trend where the relative
standard errors of RRSE decrease as the memory increases.
As shown in Fig. 6, RRSE’s accuracy in terms of the absolute
relative error ( |fi−f̂i|fi

) shows a similar trend and is better than
vHLL’s estimations in different scenarios (i.e., lower is better).
Moreover, the variance of RRSE is smaller than vHLL’s with
less memory. Under the attack traffic that contains many high
spreaders, vHLL clearly shows higher estimation errors than
RRSE, especially in the high spread range. Moreover, the
vHLL’s estimations, in the low spread range, show a larger
variance than our RRSE. The results suggest that RRSE’s
noise elimination strategy can precisely remove the noise in the
different sized spreader, and performs better than vHLL’s strat-
egy that applies a universal noise (value) across regardless of
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Fig. 5: Comparison: Theoretical and experimental relative
standard error of RRSE varying memory usage, and under
normal and attack scenarios. See Eq. (14) for theoretical error.

spreaders’ sizes. vHLL’s performance becomes stable when a
larger memory is given. However, RRSE’s estimations achieve
a similar variance but better accuracy compared to vHLL,
as shown in Fig. 6(b). In the normal traffic scenario, vHLL
shows higher estimation errors compared to our RRSE and
achieves a similar performance when a larger memory is given
Fig. 6(b). We note that vHLL shows the biased estimation
because the normal trace used in this work is larger than the
vHLL work [27]. Detailed comparisons and discussions will
be given in section IV-D.

C. Attack Traffic Scenario: Witty Worm Trace

We now simulate an attack scenario using the Witty Worm
trace [31] and compare the accuracy of RRSE with two state-
of-the-art schemes, namely vHLL [27] and MCSE [16].
Setup. We varied the memory from 0.5 Mb to 4 Mb for the
three schemes. Since the largest spreader size of the Witty
Worm trace is about 6.8 million (see Table II), RRSE sets
s = 256 and b = 4 to count up to 8.39 million destination IPs
for each source IP (i.e., up to s·2r, r = 2b−1). This parameter
setting means that each source IP (i.e., potential spreader) can
use up to 256 4-bit registers of the global register array, some
of which are shared among different spreaders. For fairness,
vHLL and RRSE use the same configuration. For MCSE, we
set g = 16 and s = 256 for a sufficient counting range, where
g is the number of memory segments and s is the number of
bits used in each segment for each spreader.
Results. Fig. 7∼10 shows the accuracy of RRSE, vHLL,
and MCSE varying the memory from 0.5 Mb to 4 Mb.
In Fig. 7∼10(a)-(c), the x-axis is the actual spreader size
(nf ) and the y-axis is the estimated spreader size (n̂f ). A
guideline y = x is shown to demonstrate bias and variance.
An estimation is underestimated when it’s below the guideline
and overestimated if above the guideline. As shown, RRSE
outperforms vHLL and MCSE under an attack scenario when
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Fig. 6: Experimental results: absolute relative error ( |fi−f̂i|fi
)

of RRSE and vHLL varying memory usage, and under normal
and attack scenarios.

many high spreaders arrive simultaneously. Moreover, while
RRSE’s estimations are shown to be unbiased with varying
memory usage, vHLL tends to overestimate the spreaders
(biased), and the amount of the overestimation becomes worse
when a smaller memory is given. Our results also show that
MCSE has a scalability issue when the average size of the
spreaders is large. We note that MCSE estimates spreaders
around 3 million with 0.5 Mb of memory and 5 million
with 1 Mb of memory, thus the data points are invisible in
Fig. 7(c)∼8(c).

To compare the three schemes, we evaluated in our
experiments, we use the average absolute relative error
(AARE= 1

n

∑i=n
1

|fi−f̂i|
fi

). As shown in Fig. 7(d)∼10(d),
RRSE’s AAREs are lower than vHLL’s AARE and MCSE’s
AARE for spreaders with different sizes. We note that AARE
(y-axis) is shown in a log-scale, which means that a small
gap in the AARE value is actually a large estimation gap.
For instance, although AARE of vHLL is slightly higher than
RRSE, the bias of vHLL’s estimations is much larger than
RRSE’s, as shown in Fig. 7(a)-(b).
Analysis. By design, MCSE divides memory into several
small segments and encodes spreaders into each segment
independently. As such, MCSE’s memory is saturated quickly
(i.e., memory efficiency), especially when the traffic includes
many high spreaders (e.g., attack traffic). As a result of this
saturation, MCSE fails to provide valid decoding results, as
shown in Fig. 7(d)∼10(d). As we highlighted in our moti-
vation, vHLL calculates a universal noise from the global
average ( sm · n̂) and applies it to all different-sized flows.
However, as shown in Fig. 1(a), the universal noise of vHLL
is insufficient to eliminate the actual noise of high spreaders.
That is because (1) the massive high spreaders in the attack
traffic increase the chance of filling registers with a higher rank
value, especially when the number of registers allocated to
each flow is big (s = 256). Due to the register sharing strategy
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Fig. 7: Attack scenario (Witty Worm trace): Accuracy of RRSE, vHLL, and MCSE with 0.5 Mb memory. In (a)-(c), each data
point stands for an individual spreader. The closer the point is to y = x, the more accurate the estimation is. When given
0.5 Mb, most of the MCSE’s estimations are greater than 3 million; thus, data points are out of the visible range. In (d), the
absolute average relative error (AARE) varying the spreader size is shown.
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Fig. 8: Attack scenario (Witty Worm trace) with 1 Mb memory.
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Fig. 9: Attack scenario (Witty Worm trace) with 2 Mb memory.
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Fig. 10: Attack scenario (Witty Worm trace) with 4 Mb memory.

and the hash collision, overestimation occurs naturally with
the local point of view of each spreader, of which evidence
can be found in Fig. 7(b)∼10(b). The bias of vHLL becomes
smaller when a larger memory is given (i.e., hash collision
mitigation). (2) Despite the massive number of high spreaders,
the majority of the Witty Worm traffic is still small spreaders
(Fig. 4(a)), which fill most registers with lower rank values.
As a result, the universal noise (= s

m · n̂) is smaller than
the actual noise of the high spreaders, as shown in Fig. 7(b).
Therefore, we conclude that vHLL’s approach of estimating
a universal noise (i.e., an identical value) is not sufficient to
eliminate the noise when the traffic involves a massive amount
of medium and high spreaders (i.e., attack scenario). Unlike
vHLL that removes an identical noise for all spreaders, RRSE
can remove a different amount of noise for an individual

spreader by recovering a measurement rank register vector
as close as possible to the original vector (i.e.,Local Rank
Distribution Recovery); thus, the noise estimation of RRSE is
more precise than that of vHLL.

D. Normal Traffic Scenario: ISP Trace
To evaluate the performance of the three schemes under a

normal traffic scenario, we repeated the same experiments we
had done earlier but using the ISP trace [32].
Setup. We used the same parameters for three schemes as
in the attack traffic scenario. We note that the number of
spreaders (i.e., source IPs) in the normal traffic scenario is
around 70 times more than the attack traffic. Although the
largest spreader in the normal traffic remains similar to the
attack traffic (i.e., 7.3 million), the average size of spreaders
is much smaller (i.e., 11 versus 9K).
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Fig. 11: Normal scenario (ISP trace): Accuracy of RRSE, vHLL, and MCSE with 0.5 Mb memory. In (a)-(c), each data point
stands for an individual spreader. The closer the point is to y = x, the more accurate the estimation is. When given 0.5 Mb
memory, most of the MCSE’s estimations are greater than 3 million, thus, data points are out of the visible range. In (d), the
absolute average relative error (AARE) varying the spreader size is shown.
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Fig. 12: Normal scenario (ISP trace) with 1 Mb memory.
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Fig. 13: Normal scenario (ISP trace) with 2 Mb memory.

2 0 k 4 0 k 6 0 k 8 0 k 1 0 0 k
2 0 k
4 0 k
6 0 k
8 0 k

1 0 0 k

Es
t. S

ize

A c t u a l  S i z e
(a) RRSE 4 Mb

2 0 k 4 0 k 6 0 k 8 0 k 1 0 0 k
2 0 k
4 0 k
6 0 k
8 0 k

1 0 0 k

Es
t. S

ize

A c t u a l  S i z e
(b) vHLL 4 Mb

2 0 k 4 0 k 6 0 k 8 0 k 1 0 0 k
2 0 k
4 0 k
6 0 k
8 0 k

1 0 0 k

Es
t. S

ize

A c t u a l  S i z e
(c) MCSE 4 Mb

1 0 k 2 0 k 3 0 k 4 0 k
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3

AA
RE

A c t u a l  S i z e

 R R S E
 v H L L
 M C S E

(d) 4 Mb AARE

Fig. 14: Normal scenario (ISP trace) with 4 Mb memory.

Results. Fig. 11∼14 show the accuracy of RRSE, vHLL, and
MCSE varying the memory from 0.5 Mb to 4 Mb. Similar to
the attack scenario, RRSE’s estimation, regardless of memory
usage, is unbiased due to our Local Rank Distribution Recov-
ery function that can precisely estimate and eliminate noise for
each spreader. However, vHLL shows higher overestimation
for high spreaders when smaller memory is given, as shown
in Fig. 11(b)∼14(b). We note that vHLL shows the biased esti-
mation (i.e., overestimation) because the network trace used in
this work is larger than the trace used in vHLL work [27] (see
Table II), while a similar memory is given. For example, our
trace has 11 distinct destination IPs per source IP in average,
whereas vHLL’s trace has only 2 destination IPs per source
IP. Moreover, our trace has 16 million connections in total,
whereas the vHLL’s trace has around 3 million connections. To
these end, our experiments show that vHLL’s noise elimination

technology produces the biased estimation when measuring a
dense network traffic. MCSE starts providing valid decoding
results with 2 Mb, although the estimation bias and variance
are larger than RRSE, as shown in Fig 13∼14(c)-(d).

Analysis. Through our analysis, we observed that the relatively
fewer high spreaders in the normal trace mitigated the memory
saturation issue of MCSE when compared with the attack
scenario. However, the memory utilization rate remains at a
high level, which results in MCSE’s inaccurate estimation.
For vHLL, the fewer high spreaders in the normal trace
mitigated the overestimation (i.e., noise level) compared to
the attack scenario. However, the majority of registers are
occupied by small spreaders, making the estimated universal
noise insufficient to eliminate the actual noise of the medium
and high spreaders, as shown in Fig. 1(b).



TABLE III: Spreader detection varying threshold. Settings:
attack trace and 2 Mb memory. vHLL’s high FPR and zero
FNR explain its overestimation, which affects benign users.

Threshold RRSE vHLL MCSE
FPR FNR FPR FNR FPR FNR

1K 0.043 0.028 0.293 0 0.01 0.035
10K 0.003 0.035 0.046 0 0.058 0.003
100K 0 0.014 0.001 0 0.089 0

Summary. RRSE is shown to be more reliable than vHLL and
MCSE with the attack scenario, where the size of spreaders
follows a uniform distribution. Moreover, RRSE shows the
best performance among the three schemes with normal traffic,
where the size of spreaders follows a heavy-tailed distribution.
Therefore, per our results, we conclude that our Local Rank
Distribution Recovery algorithm can precisely eliminate the
amount of noise caused by random memory sharing.

E. Use Case: Spreader Detection with a Threshold

We performed a use case of spreader detection using RRSE,
vHLL, and MCSE with the Witty Worm trace and varied
the detection threshold from 103 to 106. We used 2 Mb
for three schemes and compared the false positive and false
negative rates. If the actual size of a reported spreader is
smaller than our threshold, we record a false positive (FP);
otherwise, or when a spreader is not reported, we record a
false negative (FN). We calculate the FP Rate (FPR) and the
FN Rate (FNR) using the reported events. Table III shows
the detection results, where MCSE provides valid estimations
for small spreaders only (i.e., 1K∼10K) with 2 Mb memory,
as shown in Fig. 9(c). Moreover, RRSE outperforms vHLL in
terms of FPR. However, RRSE has 2.1-3.5% of FNR, whereas
vHLL is 0%.
Remark. vHLL achieved 0% of FNR because of its biased
estimation (i.e., overestimation), which can be confirmed by
its high FPR. With vHLL, many benign users will be mis-
classified as high spreaders, which is unacceptable for many
applications.

F. Query on the Fly: Cost

Next, we discuss the cost incurred by RRSE for providing
fast and more accurate estimation when compared with vHLL
and MCSE. As shown in Table IV, RRSE’s encoding has
the highest cost by requiring two additional memory reads
and writes per packet. Aside from that, all of the three
schemes need two hash computations and a similar amount of
logic/arithmetic operations (O(1)). The additional encoding
cost of RRSE is consumed for recording the global rank
distribution Cm[] on the fly. This, however, allows RRSE to
instantly respond to queries while encoding the network traffic
(i.e., faster decoding). As shown in Table IV, RRSE reads only
s+r registers for decoding, where s is the number of registers
assigned for a queried flow and r is the size of Cm[]. We note
that s usually ranges from 16 to 256 and r = 7, 15 to cover
sufficiently large estimation ranges (i.e., s · 2r).

Our experiments use s = 256 and r = 15 to count up
to about 8.39 million distinct destinations for a source IP.

TABLE IV: Overhead comparison: encoding and decoding

Schemes Reads Writes Hashes Operations

Encode
RRSE 3 3 2 O(1)
vHLL 1 1 2 O(1)
MCSE 1 1 2 O(1)

Decode
RRSE O(s+ r) O(1) O(s) O(s+ r)
vHLL O(s+m) O(1) O(s) O(s+m)
MCSE O(s.g) O(g2) O(s.g) O(s.g2)
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Fig. 15: RRSE-based spreader detection system on P4 switch.

While providing the same counting capacity, vHLL is almost
infeasible to respond to queries on the fly, since it has to read
m registers, which is the entire memory space (e.g., 0.5 Mb ∼
4 Mb), to estimate noise. Unfortunately, the noise changes over
time, therefore vHLL must repeat O(s+m) memory readings
and operations for each query. Also, MCSE’s decoding com-
plexity requires applying the maximum likelihood estimation,
which makes it infeasible for online decoding.
Remark. The additional memory read and write overheads of
RRSE will suppress its performance in a CPU environment.
However, in Field Programmable Gate Arrays (FPGAs) or
Application-specific integrated circuit (ASIC) environments,
these overheads can be significantly relaxed by the fast on-
chip memory access.

V. SPREADER DETECTION FRAMEWORK

We demonstrate the feasibility of RRSE by designing
and implementing a spreader detection framework in a pro-
grammable switch (Tofino) [33]. Resource consumption and
packet processing latency in the data plane are given to show
the performance.
Architecture. Fig. 15 depicts the architecture of our spreader
detection framework. As shown, our framework consists of
three data plane components: Packet Receiver (PR), Universal
Register Array (UAR) and Active Tracker (AT). These com-
ponents reside in the data plane of the switch for recording
(encoding) packets and detecting high spreaders. When a
packet arrives, Packet Receiver receives the flow ID from
Parser, and then hash the flow ID with CRC32 function to
derive a rank value and register indexes ( 1 ). The Universal
Register Array, which resides in SRAM, is responsible for
storing the rank value at the designated index and always
recording a larger rank value with the register ( 2 ). At the
same time, the Active Tracker will store flows that the rank
value is larger than a pre-defined threshold for building a
candidate pool of high spreaders. These flow IDs will be
further pulled by our last components Estimator, which resides



TABLE V: Normalized resource usage of three data plane
components: the packet receiver (PR), the universal register
array (URA), and the active tracker (AT).

Component PR URA AT Total
SRAM 0.1% 0.93% 0.41% 1.46%

ALU 0% 2.08% 4.16% 6.25%
Hash 5.5% 4.16% 2.77% 12.44%
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Fig. 16: RRSE’s packet processing overhead: a function-wise
breakdown of added latencies based on P4 compiler logs: PR,
URA, and AT. The baseline is the switch implementation with
default routing functions. Our RRSE only adds an insignificant
overhead as the switch still has a large room for operating other
functions (see Table V).

in the control plane for a precise estimation of the cardinality.
To do so, the Estimator retrieves flows’ rank values with their
IDs via a P4 run-time API ( 1 ) [34]. Eventually, Estimator
performs spread estimation using the proposed RRSE.
Resource Usage. Table V shows the additionally required
resources (i.e., overhead) for operating our RRSE in a switch’s
data plane. As can be seen in the table, 1.45% of SRAM,
6.25% of the Arithmetic Logic Unit (ALU, computation unit),
and 12.44% of hash power are required for our data plane
components. Overall, our framework adds only insignificant
overheads to the standard data plane functions. Moreover,
it is worth mentioning that our framework does not affect
the switch’s maximum packet processing speed since the
switch still has a large room (e.g., resource and computational
budgets) for other functions. Therefore, we conclude that our
spreader detection framework can detect the high spread at a
line rate [35]–[37].
Latency. We further break down the packet processing process
in the data plane in terms of latency. The latency analysis
is based on P4 compiling logs generated after data plane
function deployment. Through the analysis, we show which
data plane component contributes the most to the total packet
processing latency. Fig. 16 illustrates the accumulated latency
of our framework with a function-wise breakdown. As shown,
URA contributes 58.33% of the latency out of the total latency
contributed by RRSE components, Packet Receiver contributes
31.94%, and Active Tracker contributes 9.72%. The results
indicate that the rank value derivation and register value update
require some computations. However, since the switch still has
plentiful resources remaining, the total latency added by our
spreader detection framework is still in an acceptable range.

To sum up, we conclude that the proposed RRSE is
lightweight and feasible for a switch’s data plane, which has a
strong potential to be used as an in-network security function.

VI. RELATED WORKS

The cardinality estimation problem is to count the number
of distinct elements in a stream, where scaling up the esti-
mation range without significant computational and memory
overheads has been a challenge.

To count the number of distinct elements, a compact data
structure is usually used. Linear Counting [17] uses a bitmap to
store and remove duplicate elements. Each element is hashed,
the corresponding bit is set to one, and the estimation is
n̂ = −b · lnV , where b is the total number of bits and V is the
number of 0’s bits. However, the Linear Counting’s counting
capacity is linear in m. To scale up the counting capacity, a
sampling-based technique is used by MultiresolusionBitmap
[26] to exponentially decrease an encoding probability by the
series 1

2 ,
1
4 ,

1
8 .... Meanwhile, MultiresolusionBitmap combines

samples with multiple bitmaps to perform cardinality counting.
PCSA [19] has a similar approach but combines the sampling
with registers. However, the major drawback of the two
schemes is an unstable accuracy. The fundamental issue of
the two schemes is memory efficiency, which means they do
not work well when counting massive elements or the memory
is constrained.

To resolve the issue, LogLog [38] and HyperLogLog [11]
compress the memory of each element from r bits to b bits,
where b = log2 r, and r is the number of leading zeros at
the end of a hashed value, called rank. Therefore, the memory
cost for counting n distinct elements is reduced by log2 log2 n
while having the same estimation range of 2r. HyperLogLog
is simple yet powerful. Its relative error is 1.04/

√
m and needs

O(ε−2 log log n+ log n), where m is the number of registers
and n is the maximum estimation. In practice, HyperLogLog
is shown to be superior to other practical approaches such
as CSE [15], MultiresolusionBitmap [26], or Linear Counting
[17].

Driven by the increasing complexity of networks, multi-
tenant cardinality counting has emerged and gained interest.
The state-of-the-art works in this space are 1) vHLL [27],
which is an extension of HLL, and 2) Multiple CSE [16],
which is an extension of CSE [15]. They both use a random
memory sharing technique but at different levels: register and
bit. The major challenge in this domain is to eliminate noise
caused by memory sharing, which motivates our work.

VII. CONCLUSION

In this paper, we proposed a novel noise elimination tech-
nique for the random memory sharing-based multi-tenant
HyperLogLog. Our solution, called RRSE, is shown to be
superior to the prior works, supported by theoretical proof and
extensive experiments. Moreover, RRSE provides a reliable
estimation under normal and attack traffic scenarios. To show
its feasibility, we implemented RRSE on a programmable
switch and showed a use case of threshold-based spreader
detection. We believe this work opens a new direction in
addressing noise reduction for multi-tenant HyperLogLog and
will inspire further developments in sketch-based designs.
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