Graph-based Comparison of IoT and Android Malware

Hisham Alasmary!, Afsah Anwar®, Jeman Park!,
Jinchun Choi'2, Daehun Nyang?, and Aziz Mohaisen®-3

1 University of Central Florida, Orlando, FL 32816, USA
2 Inha University, Incheon, Republic of Korea
hisham, afsahanwar, parkjeman, jc.choi@Knights.ucf.edu,
2nyang@ inha.ac.kr,>mohaisen@ucf.edu

Abstract. The growth in the number of android and Internet of Things (IoT)
devices has witnessed a parallel increase in the number of malicious software
(malware) that can run on both, affecting their ecosystems. Thus, it is essential
to understand those malware towards their detection. In this work, we look into
a comparative study of android and IoT malware through the lenses of graph
measures: we construct abstract structures, using the control flow graph (CFG)
to represent malware binaries. Using those structures, we conduct an in-depth
analysis of malicious graphs extracted from the android and IoT malware. By
reversing 2,874 and 201 malware binaries corresponding to the IoT and android
platforms, respectively, extract their CFGs, and analyze them across both general
characteristics, such as the number of nodes and edges, as well as graph algorith-
mic constructs, such as average shortest path, betweenness, closeness, density,
etc. Using the CFG as an abstract structure, we emphasize various interesting
findings, such as the prevalence of unreachable code in android malware, noted
by the multiple components in their CFGs, the high density, strong closeness and
betweenness, and larger number of nodes in the android malware, compared to
the IoT malware, highlighting its higher order of complexity. We note that the
number of edges in android malware is larger than that in IoT malware, high-
lighting a richer flow structure of those malware samples, despite their structural
simplicity (number of nodes). We note that most of those graph-based properties
can be used as discriminative features for classification.

Keywords: Malware; Android; IoT; Graph Analysis.

1 Introduction

Internet of Things (IoT) is a new networking paradigm interconnecting a large number
of devices, such as voice assistants, sensors, and automation tools, with many promising
applications [1]]. Each of those devices runs multiple pieces of software, or applications,
which increase in complexity, could have vulnerabilities that could be exploited, result-
ing in various security threats and consequences. As a result, understanding IoT soft-
ware through analysis, abstraction, and classification is an essential problem to mitigate
those security threats [112].

There has been a large body of work on the problem of software analysis in general,
and a few attempts on analyzing IoT software in particular. However, the effort on IoT

software analysis has been very limited with respect to the samples analyzed and the
approaches attempted. Starting with a new dataset of IoT malware samples, we pursue a
graph-theoretic approach to malware analysis. Each malware sample can be abstracted
into a Control Flow Graph (CFG), which could be used to extract representative static
features of the application. As such, graph-related features from the CFG can be used
as a representation of the software, and classification techniques can be built to tell
whether the software is malicious or benign, or even what kind of malicious software it
is (e.g., malware family level classification and label extrapolation).

The limited existing literature on IoT malware, and despite malware analysis, clas-
sification, and detection being a focal point of analysts and researchers [3/4L5l6], points
at the difficulty, compared to other malware type. Understanding the similarity and dif-
ferences of IoT malware compared to other prominent malware type will help analysts
understand the differences and use them to build detection systems upon those differ-
ences. To understand how different the IoT malware is from other types of emerging
malware, such as mobile applications, we perform a comparative study of those graph-
theoretic features in both types of software to highlight the control flow graph shift in
IoT malware to android application malware.

Contributions. In this paper, we make the following contributions. First, building on
the existing literature of mobile apps analysis and abstraction using CFGs, we look
into analyzing CFGs of emerging and recent IoT malware samples. Then, using various
graph-theoretic features, such as degree centrality, betweenness, graph size, diameter,
radius, distribution of shortest path, etc., we contrast those features in IoT malware to
those in mobile applications, uncovering various similarities and differences. There-
fore, the findings in this paper can be utilized to distinguish between IoT malware and
android malware.

Organization. The rest of this paper is organized as follows. In section [2| we review the
related work. In section [3| we introduce the methodology and approach of this paper,
including the dataset, data representation and augmentation, control flow graph defini-
tion, and graph theoretic metrics. In section [4 we present the results. In section [5] we
present discussion and comparison, followed by concluding remarks in section [f]

2 Related Work

The limited number of works have been done on analyzing the differences between an-
droid (or mobile) and IoT malware, particularly using abstract graph structures. Hu et
al. [[7] designed a system, called SMIT, which searches for the nearest neighbor in mal-
ware graphs to compute the similarity across function using their call graphs. They fo-
cused on finding the graph similarity through an approximate graph-edit distance rather
than approximating the graph isomorphism since few malware families have the same
subgraphs with others. Shang et al. [5] analyzed code obfuscation of the malware by
computing the similarity of the function call graph between two malware binaries — used
as a signature — to identify the malware. Christodorescu and Jha [8] analyzed obfusca-
tion in malware code and proposed a detection system, called SAFE, that utilizes the
control flow graph through extracting malicious patterns in the executables. Bruschi e?
al. 9] detected the self-mutated malware by comparing the control flow graph of the
malware code to the control flow graphs for other known malware.

Tamersoy et al. [[10]] proposed an algorithm to detect malware executables by com-
puting the similarity between malware files and other files appearing with them on the
same machine, by building a graph that captures the relationship between all files. Ya-
maguchi et al. [11]] introduced the code property graph which merges and combines
different analysis of the code, such as abstract syntax trees, control flow graphs and
program dependence graphs in the form of joint data structure to efficiently identify
common vulnerabilities. Caselden et al. [12] generated a new attack polymorphism
using hybrid information and CFG, called HI-CFG, which is built from the program bi-
naries, such as a PDF viewer. The attack collects and combines such information based
on graphs; code and data, as long as the relationships among them.

Wuchner et al. [[13]] proposed a graph-based detection system that uses a quantitative

data flow graphs generated from the system calls, and use the graph node properties, i.e.
centrality metric, as a feature vector for the classification between malicious and benign
programs. In addition, Jang et al. [14] used a behavioral representation of the programs
as quantitative data flow graphs to classify the malware families based on their system
call structures by using multiple graph characteristics, such as degree centrality, graph
density, etc., as a feature vector.
Android malware. Gascon et al. [15] detected android malware through classifying
their function call graphs. They found the reuse of malicious codes across multiple mal-
ware samples showing that malware authors reuse existing codes to infect the android
applications. Zhang et al. [[16] proposed a detection system for the android malware by
constructing signatures through classifying the API dependency graphs and used that
signature to uncover the similarities of android applications behavior.

3 Methodology

The goal of this study is to understand the underlying differences between modern
android and emerging IoT malware through the lenses of graph analysis. The abstract
graph structure through which we analyze malware is the control flow graph (CFG),
previously used in analyzing malware as shown above. Unique to this study, however,
we look into various algorithmic and structural properties of those graphs to understand
code complexity, analysis evasion techniques (decoy functions, obfuscation, etc.).

Towards this goal, we start by gathering various malware samples in two datasets,
IoT and android. For our IoT dataset, we utilized samples gathered through the IoTPOT
honeypot [17]]. For our android dataset, various recent android malware samples, due to
Shen et al. (obtained from a security analysis vendor) are utilized [18]. For our analysis,
we augment the datasets by reversing the samples to address various analysis issues.
Using an off-the-shelf tool, we then disassemble the malware samples to obtain the
CFG corresponding to each of them. We use the CFG of each sample as an abstract
representation and explore various graph analysis measures and properties. The rest of
this section highlights the details of the dataset creation and associated analysis.

3.1 Dataset Creation

Our IoT malware dataset is a set of 2,874 malware samples, randomly selected from
the IoTPOT [17], a telnet-based honeypot which is now extended to other services.

Identification

General
(Nodes™) ponents_|
Assembl Functions E””“: =
Dlsassemblyl Detectmn/% Graph _,|
Android Code Processing

Data Gathering Preprocessing Analysis

Fig. 1: Data flow diagram for the analysis process for the CFGs.

Additionally, we also obtained a dataset of 201 android malware samples from [18]
for contrast. These datasets represent each malware type. We reverse-engineered the
malware datasets using Radare2 [19], a reverse engineering framework that provides
various analysis capabilities including disassembly. To this end, we disassemble the IoT
binaries, which in the form of Executable and Linkable Format (ELF) binaries, as well
as the Android Application Packages (APKs) using the same tool, radare2. Radare2
is an open source command line framework that supports a wide variety of malware
architecture and has a python API, which facilitated the automation of our analysis.
Labeling. To determine if a file is malicious, we uploaded the samples on VirusTo-
tal [20] and gathered the scan results corresponding to each of the malware. We observe
that each of the IoT and android malware is detected by at least one of the antivirus soft-
ware scanners listed in VirusTotal, whereas the android dataset has a higher rate.
Differences. We notice that while the android malware samples are detected by almost
every antivirus software, the [oT malware has a low detection rate, which is perhaps an-
ticipated given the fact that the IoT malware samples are recent and emerging threats,
with fewer signatures populated in the antivirus scanners, compared to well-understood
android malware. To further examine the diversity and representation of the malware
in our dataset, we label them by their family (class attribute). To do so, we use AV-
Class [21], a tool that ingests the VirusTotal results and provides a family name to each
sample through various heuristics of label consolidation. Table [I] shows the top seven
family labels and their share in both the IoT and android malware datasets. Overall,
we noticed that the IoT malware belong to seven families, while the android malware
belong to 39 unique families, despite the clear imbalance in the number of samples.
Processing. In a preprocessing phase, we first manually analyzed the samples to under-
stand their architectures and whether they are obfuscated or not, then used Radare2’s
Python API, r2pipe, to automatically extract the CFGs for all malware samples. Then,
we used an off-the-shelf graph analysis tool, NetworkX, to compute various graph prop-
erties. Using those calculated properties, we then analyze and compare IoT and android
malware. Figure[T|shows the analysis workflow we follow to perform our analysis.
Program Formulation. We use the CFGs of the different malware samples as abstract
characterizations of programs for their analysis. For a program P, we use G = (V, E)
capturing the control flow structure of that program as its representation. In the graph
G, V is the set of nodes, which correspond to the functions in P, whereas F is the
set of edges which correspond to the call relationship between those functions in P.
More specifically, we define V' = {vq,v2...,v,} and E = {e;;} for all ¢, j such that
ei; € E if there is a flow from v; to v;. We use |V| = n to denote the size of G, and
|E| = m to denote the number of primitive flows in G (i.e., flows of length 1). Based

Table 1: Top 7 android and IoT families with their number of malware samples.

Android Family # of samples IoT Family # of samples

Smsreg 72 Gafgyt 2,609
Smspay 34 Mirai 185
Dowgin 14 Tsunami 64
Zdtad 9 Singleton 7
Kuguo 9 Hajime 7
Revmob 8 Lightaidra 1
Smsthief 6 Ircbot 1

on our definition of the CFG, we note that G is a directed graph. As such, we define
the following centralities in G. We define A = [a;;]"*" as the adjacency matrix of the
graph G such that an entry a;; = 1 if v; = v; and 0 otherwise.

3.2 Graph Algorithmic Properties

Using this abstract structure of the programs, the CFG, we proceed to perform various
analyses of those programs to understand their differences and similarities. We divide
our analysis into two broader aspects: general characteristics and graph algorithmic
constructs. To evaluate the general characteristics, we analyze the basic characteristics
of the graphs. In particular, we analyze the number of nodes and the number of edges,
which highlight the structural size of the program. Additionally, we evaluate the graph
components to analyze patterns between the two malware types. Components in graphs
highlight unreachable code, which are the result of decoys and obfuscation techniques.
Moreover, we assess the graph algorithmic constructs; in particular, we calculate the
theoretic metrics of the graphs, such as the diameter, radius, average closeness centrality
etc. We now define the various measures used for our analysis.

Definition 1 (Density). Density of a graph is defined as the closeness of an edge to the
maximum number of edges. For a graph G = (V, E), the graph density can be repre-
sented as the average normalized degree, such as: Density = 1/ny ., deg(vi’c H/n—
1 for a benign graph. Other for the IoT and android graph are defined accordingly.

Definition 2 (Shortest Path). For a graph G = (V;, E;), the shortest path is defined
as: vF,vit vl v, oY such that length(vP — vY) is the shortest path. It finds all
shortest paths from v¥ — v}, for all vfj, which is arbitrary, except for the starting node

v;. The shortest path is then denoted as: Svg.

Definition 3 (Closeness centrality). For a node v;, the closeness is calculated as the
average shortest path between that node and all other nodes in the graph G. This is,
let d(v;, vj) be the shortest path between v; and v, the closeness is calculated as c. =

ZVUJ-EVXW d(via Uj)/n - L

Definition 4 (Betweenness centrality). For a node v; € V, let A(v;) be the total
number of shortest paths that go through v; and connect nodes v; and vy, for all j and
r where i # j # r. Furthermore, let A(.) be the total number of shortest paths between
such nodes. The betweenness centrality is defined as A(v;)/A(L).

08 // 08 |7
0 0.6 f 0 0.6
g ®
0.4 0.4
0.2 0.2
Android Android
IoT IoT
0 | | | 0 | |
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
The number of nodes The number of edges
Fig. 2: CDF for the Nodes Fig. 3: CDF for the Edges

Definition 5 (Connected components). A connected component in graph G is a sub-
graph in which two vertices are connected to each other by a path, and which is con-
nected to no additional vertices in the subgraph. The number of components of G is the
cardinality of a set that contains such connected components.

Definition 6 (Diameter and Radius). The diameter of a graph G = (V, E) is defined
as the maximum shortest path length between any two pairs of nodes in the graph,
while the radius is the smallest shortest path length among any two pairs of nodes
in G. More precisely, let d(v;,v;) be the shortest path length between two arbitrary
nodes in G. The diameter is defined as maxy,; d(v;, vj) while the radius is defined as
minv#j d(’Uq;, Uj).

In this work, we use a normalized version of the centrality, for both the closeness and
betweenness, where the value of each centrality ranges from O to 1.

4 Results
4.1 General Analysis

Figures[2|and [3|show the difference between the android and IoT malware in terms of
two major metrics of evaluation of graphs, namely the nodes and edges.

Nodes. It can be seen in figure [2] that the top 1% of the android and IoT malware
samples have at least 1,777 and 367 nodes, respectively. We note that those numbers
are not close to one another, highlighting a different level of complexity and the flow-
level. In addition, as shown in Figure [2] we also notice a significant difference in the
topological properties in the two different types of malware at the node count level.
This is, while the android malware samples seem to have a variation in the number of
nodes per sample, characterized by the slow growth of the y-axis (CDF) as the x-axis
(the number of nodes) increases. On the other hand, the IoT malware have less variety
in the number of nodes: the dynamic region of the CDF is between 1 and 60 nodes (slow
curve), corresponding to [0.2-0.3] of the CDF (this is, 10% of the samples have 1 to 60
nodes, which is a relatively small number). Furthermore, with the android malware, we
notice that a large majority of the samples (almost 60%) have around 100 nodes in their
graph. This characteristic seems to be unique and distinguishing, as shown in Figure 2]

Edges. Figure 3| represents the top 1% of the android and IoT malware samples, 1,707
and 577 edges, respectively, which shows a great difference between them. In particular,
this figure shows that differences at the edges count as well. The android samples have
a large number of edges in every sample that can be shown from the slow growth on
the y-axis. Similar to the node dynamic region for the IoT, the IoT samples seem to
have a smaller number of edges; the active region of the CDF between 1 to 85 edges
correspond to [0.2-0.4] (about 20% of the samples). Additionally, we notice that the
smallest 60% of the android samples (with respect to their graph size) have 40 edges
whereas the same 60% of the IoT samples have around 95 edges.

This combined finding of the number of edges and nodes in itself is very intriguing:
while the number of nodes in the IoT malware samples is relatively smaller than that
in the android malware, the number of edges is higher. This is striking, as it highlights
a simplicity at the code base (smaller number of nodes) yet a higher complexity at the
flow-level (more edges), adding a unique analysis angle to the malware that is only
visible through the CFG structure.

Density. Figure] shows the density of the datasets, where we notice almost 90% of the
IoT samples have a density around 0.05 whereas the android samples have a diverse
range of density over around 0.15. By examining the CDF further, we notice that the
density alone is a very discriminative feature of the two different types of malware: if
we are to use a cut-off value of 0.07, for example, we can successfully tell the different
types of malware apart with an accuracy exceeding 90%.

Graph Components. Figure [5] shows
a boxplot illustration of the number of
components in both the IoT and an- 1
droid malware’s CFGs. We notice that
3.23% of the IoT malware, correspond-
ing to 93 IoT samples, have more than
two components, which indicates that a
large percentage of the IoT samples have
one component that represents the whole
control graphs for the samples. These
samples have a range of file sizes from
56,500 — 266,200 Bytes. We notice that r L5 2
526 (18.3%) of the IoT samples, on the Density

other hand, have only one node, with

CDF

Android
oT

file sizes in the range of around 2,000 — Fig.4: The QISt.rlbl.mOI.l (.)f d.e nsity. Notice
that the density is discriminative, where one

350,000 bytes. .
can tell the two types of malware apart with

The android malware have a large high accuracy (90%) for a fixed density.
number of components. We find that

4.47%, or 9 android samples, have only

one component, where their size ranges from around 16,900 — 240,900 bytes. On the
other hand, 192 samples (95.5%) have more than one component. We note that the
existence of multiple components in the CFG is indicative of the unreachable code in
the corresponding program (possible a decoy function to fool static analysis tools). As

1000

100

#c

Android IoT
Type

Fig.5: The distribution of the number of components in CFGs. Notice that #¢ means
the number of components. The box represents the distribution from the upper quartile

to the lower quartile, and the black bar represents the median value.
1 T 1

0.9 —
. 0.9
P

0.8 rJ 0.8 /i/

0.7 0.7

0.6 0.6
59 / o
a 0.;5 a 0.5
© 04 /. © o4 7

0.3 0.3

02 // 0.2 /1/

0.1 Android] | Android a

o) I(IT‘) 0(1) ; ‘ loT
0 0.1 02 03 04 05 06 07 08 09 1 0 005 01 015 02 025 03 035
Average of closeness centrality Average of betweenness centrality

Fig. 6: The average of closeness centrality Fig. 7: The average of betweenness central-
in the largest component of each sample. ity in the largest component of each sample.

such, we consider the largest component of these samples for the further CFG-based
analysis. However, we notice that 20 android samples have the same node counts in
the first and second largest components. Furthermore, we find 14 samples that have the
same number of node and edge counts in the first and second largest components. The
number of nodes and edges in these samples range from 0 — 5, but the file sizes range
from around 118,000 — 3,300,000 bytes.

Root Causes of Unreachable Code / Components. Figure[5]shows the boxplot of the
number of components for both the android and IoT malware. The boxplot captures
the median and 1st and 3rd quartile, as well as the outliers. We notice that the median
of the number of components in IoT samples is 1, whereas the majority of android
malware lies between 8 and 18, with median of 14 components. We notice this issue
of unreachable code to be more prevalent in the android malware but not in the IoT
malware, possibly for one of the following reasons. 1) The android platforms are more
powerful, allowing for complex software constructs that may lead to unreachable codes,
whereas the IoT platforms are constrained, limiting the number of functions (software-
based). 2) The android Operating System (OS) is advanced and can handle large code
bases without optimization, whereas the IoT OS is a simple environment that is often
time optimized through tools that would discard unreachable codes before deployment.

4.2 General Algorithmic Properties and Constructs

Closeness. Figure[6]depicts the CDF for the average closeness centrality for both datasets.
To reach this plot, we generalize the definition in [3| by aggregating the average close-
ness for each malware sample and obtaining the average. As such, we notice that around
5% of the IoT and android have around 0.14 average closeness centrality. This steady
growth in the value continues for the android samples as shown in the graph; 80% of the
nodes have a closeness of less than 0.6. On the other hand, the IoT samples closeness
pattern tend to be within the small range: the same 80% of IoT samples have a closeness
of less than 0.19, highlighting that the closeness alone can be used as a distinguishing
feature of the two different types of malware.
Betweenness. Figure 7| shows the average betweenness centrality for both the datasets.
The average betweenness is defined by extending [4]in a similar way to extending the
closeness definition. Similar to the closeness centrality, 10% of the IoT and android
samples have almost 0.07 average betweenness centrality, which continues with a small
growth for the android malware to reach around 0.26 average betweenness after cov-
ering 80% of the samples. However, we notice a significant increase in the IoT curve
where 80% of the samples have around 0.08 average betweenness that shows a slight
increase when covering a large portion of the IoT samples. This huge gap that we notice
in Figure[6]and[7)is quite surprising although explained by correlating the density of the
graph to both the betweenness and the closeness: the android samples tend to have a
higher density, thus an improved betweenness, which is not the case of the IoT.
Diameter, radius, and average shortest path. Figure [§] shows the diameter of the
graphs. Almost 15% of the IoT samples have a diameter of around 12 that can be noticed
from the slow growth in the CDF, whereas the android malware have around 0.1. After
that, there is a rapid increase in the CDF curve for the diameter in the 80% of both
samples, reaching 9 and 17 for the android and IoT, respectively. Similarly, Figure [9]
shows the CDF of the radius of the graphs. We notice that 15% of the android samples
have a radius of around 1, while the IoT samples have around 6. In addition, 80% of the
android samples have around 4 while the IoT have around 8. This shows the significant
increase for both datasets. As a result from these two figures, we can define a feature
vector to detect the android and IoT samples, where we can use the value of 10 for the
diameter and 5 for the radius to tell different malware types apart.

Figure [I0] represents the average shortest path for the graphs. Similar to the other
feature vectors, we notice almost 80% of the [oT malware have an average shortest path
greater than 5, whereas the android malware have an average less than 5.

S Discussion and Comparison

We conduct an empirical study of the CFGs corresponding to 3,075 malware samples
of IoT and android. We generate the CFGs to analyze and compare the similarities
and differences between the two highly prevalent malware types using different graph
algorithmic properties to compute various features.

Based on the above highlights of the CFGs, we observe a major difference between
the IoT and android malware in terms of the nodes and edges count, which are the main
evaluation metric of the graph size. Our results show that unlike the android samples,
the IoT malware samples are more likely to contain a lesser number of nodes and edges.

09 |- . 0.9 /7/;
0.8 | o 0.8 /]
0.7 |t . 0.7 [
[] o {
o 06 o 06 (N
8 05 | | g§os 1
04 |] 0.4 [
03 |}] 0.3 /]
0.2 FE— . 0.2
0.1 7/ Android — | 0.1 !) Android a
| | | | | | loT | () — | foT |
0
0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35
Diameter Radius
Fig. 8: The distribution of diameter. Fig.9: The distribution of radius.
1
09 |
os| /]
07 | JJ
L 06 l
8 05 |
04 |
03 |-
02 | 3
0.1 | I ST i Android |
py — i L
0 5 10 15 20 25

The average of shortest paths

Fig. 10: The average of the lengths of shortest paths.

Even though around 21% of the IoT malware, or 603 samples, have less than two nodes
and edges, we notice they have various file sizes ranging from around 2,000 to 350,000
bytes per sample. This finding can be interpreted by the use of different evasion tech-
niques from the malware authors in order to prevent analyzing the binaries statically.
We notice these malware samples correspond to only one component except for one
malware sample that corresponds to two components.

With the high number of nodes and edges in the android malware, and unlike the
IoT samples, we observe that the CFGs of almost 95.5%, or 192 android samples, have
more than one component, which shows that the android malware often uses unreach-
able functions. This is shown when using multiple entry points for the same program,
and the multiple components (unreachable code) is a sign of using decoy functions or
obfuscation techniques to circumvent the static analysis. In addition, the prevalence of
unreachable code indicates the complexity of the android malware: these malware sam-
ples have a file size ranging from 118,500 to 29,000,000 bytes, which is quite large in
comparison to the [oT malware (2k-350k, as shown above).

After analyzing different algorithmic graph structures, we observe a major variation
between the IoT and android malware graphs. We clearly notice a cut-off value for the
density, average closeness, average betweenness, diameter, radius, and average shortest
path for both datasets that can be applied to the detection system and reach an accuracy

10

range around 80% — 90% based on the feature vector being applied. We notice that those
differences in properties are a direct result of the difference in the structural properties
of the graphs, and can be used for easily classifying different types of malware, and
showing their distinctive features.

In most of the characterizations we conducted by tracing the distribution of the prop-
erties of the CFGs of different malware samples and types, we notice a slow growth in
the distribution curve of the android dataset, whereas a drastically increase for the IoT
dataset. These characteristics show that the android malware samples are diverse in
their characteristics with respect to the measured properties of their graphs, whereas
the IoT malware is less diverse. We anticipate that due to the emergence of IoT mal-
ware, and expect that characteristic to change over time, as more malware families are
produced. We also observe that the IoT malware samples are denser than the android
malware. As shown in Figure E], we observe that 75 IoT malware, or almost 2.6%, have
a density equal to 2. By examining those samples, we found that they utilize an analysis
circumvention technique resulting in infinite loops.

Our analysis shows the power of CFGs in differentiating android from IoT malware.
It also demonstrates the usefulness of CFGs as a simple high-level tool before diving
into lines of codes. We correlate the size of malware samples with the size of the graph
as a measure of nodes and edges. We observe that even with the presence of low node
or edge counts, the size of malware could be very huge, indicative of obfuscation.

6 Conclusion

In this paper, we conduct an in-depth graph-based analysis of the android and IoT mal-
ware to highlight the similarity and differences. Toward this goal, we extract malware
CFGs as an abstract representation to characterize them across different graph features.
We highlight interesting findings by analyzing the shift in the graph representation from
the 10T to the android malware and tracing size (nodes, edges, and components). We
observe decoy functions for circumvention, which correspond to multiple components
in the CFG. We further analyze algorithmic features of those graphs, including close-
ness, betweenness, and density, which all are shown to be discriminative features at the
malware type level, and could be used for classification.

Acknowledgement. This work is supported by the NSF grant CNS-1809000, NRF
grant 2016K1A1A2912757, Florida Center for Cybersecurity (FC2) seed grant, and
support by the Air Force Research Lab. This work would not have been possible with-
out the support of Ernest J. Gemeinhart.

References

1. A. Gerber. (Retrieved, 2017) Connecting all the things in the Internet of Things. Available at
[Online]: https://ibm.co/2qgMx97a.

2. L. Harrison. (Retrieved, 2015) The Internet of Things (IoT) vision. Available at [Online]:
https://blog.equinix.com/blog/2015/03/12/the- internet-of-things-iot- vision/.

3. A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL.: high-fidelity, behavior-based auto-
mated malware analysis and classification,” Computers & Security, vol. 52, pp. 251-266,
2015.

11

https://ibm.co/2qMx97a
https://blog.equinix.com/blog/2015/03/12/the-internet-of-things-iot-vision/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

A. Mohaisen and O. Alrawi, “AV-Meter: An evaluation of antivirus scans and labels,” in Pro-
ceedings of the Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA,
2014, pp. 112-131.

. S. Shang, N. Zheng, J. Xu, M. Xu, and H. Zhang, “Detecting malware variants via function-

call graph similarity,” in Proceedings of the 5th International Conference on Malicious and
Unwanted Software, MALWARE, 2010, pp. 113-120.

. A. Mohaisen and O. Alrawi, “Unveiling zeus: automated classification of malware samples,”

in Proceedings of the 22nd International World Wide Web Conference, WWW, 2013, pp.
829-832.

. X. Hu, T. Chiueh, and K. G. Shin, “Large-scale malware indexing using function-call

graphs,” in Proceedings of the ACM Conference on Computer and Communications Secu-
rity, CCS, 2009, pp. 611-620.

. M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious patterns,”

in Proceedings of the 12th USENIX Security Symposium, 2003.

. D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating malware using control-

flow graph matching,” in Proceedings of the Detection of Intrusions and Malware, and Vul-
nerability Assessment Conference, DIMVA, 2006, pp. 129-143.

A. Tamersoy, K. A. Roundy, and D. H. Chau, “Guilt by association: large scale malware
detection by mining file-relation graphs,” in Proceedings of the the 20th ACM International
Conference on Knowledge Discovery and Data Mining, KDD, 2014, pp. 1524-1533.

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities
with code property graphs,” in Proceedings of the IEEE Symposium on Security and Privacy,
SP, 2014, pp. 590-604.

D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D. Song, “HI-CFG: construction
by binary analysis and application to attack polymorphism,” in Proceedings of the 18th Eu-
ropean Symposium on Research in Computer Security, 2013, pp. 164—181.

T. Wiichner, M. Ochoa, and A. Pretschner, “Robust and effective malware detection through
quantitative data flow graph metrics,” in Proceedings of the Detection of Intrusions and Mal-
ware, and Vulnerability Assessment Conference, DIMVA, 2015, pp. 98-118.

J.-w. Jang, J. Woo, A. Mohaisen, J. Yun, and H. K. Kim, “Mal-Netminer: Malware clas-
sification approach based on social network analysis of system call graph,” Mathematical
Problems in Engineering, 2015.

H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection of android malware
using embedded call graphs,” in Proceedings of the ACM Workshop on Artificial Intelligence
and Security, AlSec, 2013, pp. 45-54.

M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android malware classification
using weighted contextual API dependency graphs,” in Proceedings of the ACM Conference
on Computer and Communications Security, CCS, 2014, pp. 1105-1116.

Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow, “loTPOT:
A novel honeypot for revealing current IoT threats,” Journal of Information Processing, JIP,
vol. 24, pp. 522-533, 2016.

F. Shen, J. D. Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek, “Android malware detection
using complex-flows,” in Proceedings of the 37th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS, 2017, pp. 2430-2437.

Developers. (Retrieved, 2018) Radare2. Available at [Online]: https://www.radare.org/r/.
Developers. (Retrieved, 2018) VirusTotal. Available at [Online]: https://www.virustotal.com.
M. Sebastidn, R. Rivera, P. Kotzias, and J. Caballero, “AVClass: A tool for massive malware
labeling,” in Proceedings of the 19th the International Symposium on Research in Attacks,
Intrusions and Defenses, RAID, 2016, pp. 230-253.

12

https://www.radare.org/r/
https://www.virustotal.com

	Graph-based Comparison of IoT and Android Malware

