COMPUTERS & SECURITY 58 (2016) 125-138

Available online at www.sciencedirect.com

Computers

&
Security

ScienceDirect

journal homepage: www.elsevier.com/locate/cose

#* Andro-Dumpsys: Anti-malware system based
on the similarity of malware creator and malware
centric information

@ CrossMark

Jae-wook Jang °, Hyunjae Kang *, Jiyoung Woo ¢, Aziz Mohaisen ,

Huy Kang Kim **

2 Graduate School of Information Security, Korea University, Republic of Korea
® Enterprise Risk Service, Deloitt Anjin LLC, Republic of Korea
¢ Computer Science and Engineering Department, State University of New York at Buffalo (SUNY Buffalo), USA

ARTICLE INFO

ABSTRACT

Article history:

Received 2 July 2015

Received in revised form 12
December 2015

Accepted 28 December 2015
Available online 8 January 2016

Keywords:

Volatile memory acquisition
Similarity

Malware creator centric
information

Mobile malware

With the fast growth in mobile technologies and the accompanied rise of the integration
of such technologies into our everyday life, mobile security is viewed as one of the most
prominent areas and is being addressed accordingly. For that, and especially to address the
threat associated with malware, various malware-centric analysis methods are developed
in the literature to identify, classify, and defend against mobile threats and malicious actors.
However, along with this development, anti-malware analysis techniques, such as packing,
dynamic loading, and dex encryption, have seen wide adoption, making existing malware-
centric analysis methods less effective. In this paper, we propose a feature-rich hybrid anti-
malware system, called Andro-Dumpsys, which leverages volatile memory acquisition for
accurate malware detection and classification. Andro-Dumpsys is based on similarity match-
ing of malware creator-centric and malware-centric information. Using Andro-Dumpsys, we
detect and classify malware samples into similar behavior groups by exploiting their foot-
prints, which are equivalent to unique behavior characteristics. Our experimental results

Android demonstrate that Andro-Dumpsys is scalable, and performs well in detecting malware and
classifying malware families with low false positives and false negatives, and is capable of
responding zero-day threats.

© 2016 Elsevier Ltd. All rights reserved.
the third quarter of 2014, increased by 16% from the previous

1. Introduction

quarter, and increased by 112% from that of the same quarter
of the prior year (McAfee, 2014). To defend against malware,

Despite the continuous detection and defense efforts of
antivirus (AV) vendors, the number of mobile malware is
rapidly increasing, and their capabilities are getting more
sophisticated. According to a report by McAfee, the total
number of mobile malware samples exceeded five million in

* Corresponding author. Tel.: +82 2 3290 4898.

AV vendors analyze tens of thousands of malware samples
daily, and prevent them from spreading. While successful in
achieving their goal, AV vendors are always in an arms race
with cyber criminals who utilize various sophisticated tech-
niques to circumvent detection efforts. Such techniques are

E-mail addresses: changkr@korea.ac.kr (J. Jang), janetk1004@gmail.com (H. Kang), jywoo@korea.ac.kr (J. Woo), mohaisen@buffalo.edu

(A. Mohaisen), cenda@korea.ac.kr (H.K. Kim).
http://dx.doi.org/10.1016/j.cose.2015.12.005
0167-4048/© 2016 Elsevier Ltd. All rights reserved.

mailto:changkr@korea.ac.kr
mailto:janetk1004@gmail.com
mailto:jywoo@korea.ac.kr
mailto:mohaisen@buffalo.edu
mailto:cenda@korea.ac.kr
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.12.005&domain=pdf

126 COMPUTERS & SECURITY 58 (2016) 125-138

very difficult to detect, especially given their potentially legit
use.

Recently, code-packing techniques have been widely used
for legitimate reasons: intellectual property protection; they
are used to prevent competitors from analyzing codes. In par-
ticular, those techniques utilize anti-decompiling, anti-
debugging, and anti-tampering, as well as compression and
encryption of applications to reach their end goal. Malware cre-
ators, however, utilize the same techniques, making static
malware analysis techniques ineffective. Especially, the number
of malware families adopting anti-malware analysis tech-
niques, such as packing (e.g., Apkprotect (Apkprotect, 2013) and
Bangcle (Bangcle, 2014)), dynamic loading, and dex encryp-
tion (e.g., DES), has increased rapidly (Yu, 2014). Furthermore,
the Android platform, a popular mobile operating system,
supports dynamic loading methods for flexible memory
management.

Dynamic loading methods of other binary files (such as dex
or jar) provide flexible memory allocation and extend the
dynamic functionality during runtime execution. The dex (en-
cryption) technique is an anti-analysis method, used for
intellectual property protection by encryption, and requires the
application to be fetched in a memory section at the instal-
lation time. When utilized in malware as an embedding
technique, it further complicates the analysis and makes the
static analysis ineffective. In particular, many static analysis
approaches in the literature failed to parse meaningful code
patterns from the application embedding these anti-malware
analysis techniques (Arp et al., 2014; Peng et al., 2012; Wang
etal., 2013; Yang et al., 2014; Zhang et al., 2014). Dynamic analy-
sis addresses obfuscation, packing, and encryption attempts,
since all of those approaches are eliminated during the ex-
ecution of malware (Enck et al., 2009; Jang et al., 2014; Pearce
et al., 2012; Zhang et al., 2013). However, the dynamic analy-
sis is only done on the part of the application that is actually
executed, and the malicious behavior must be executed during
the analysis for malware to be detected (Mohaisen et al., 2015).
This leaves a lot of options for malware creators to game the
uncertainty of malware analysts. This calls for utilizing other
implicit and explicit threat signals and indicators that could
be helpful in detecting malware and thwarting their authors’
efforts.

For example, for the quick response, it is necessary for
malware analysts to check the target of malware attack and
its context, since it reflects the attack’s intent as meant by the
malware creator. Such intent could be a valuable piece of in-
formation to detect and analyze malware. In order to
understand the attack’s intent, we follow a detailed process
that aims to answer the following questions. 1) What do
malware creators want to obtain by launching an attack? 2)
How do malware creators attack a victim? 3) What do malware
creators need for launching the attack? By answering these
questions, malware analysts can understand malware cre-
ator’s attack patterns and use that pattern as a strong signal
for analysis.

We rely on various artifacts to obtain such signal. For
example, while verifying an application, the Android operat-
ing system (OS) requires each application to be digitally signed
with a certificate. Each digital certificate is identified uniquely
by the serial number, which is difficult to forge. Then, lever-

aging malware creator-centric attributes, such as the digital
certificate and its serial number, could be essential and helpful
to malware analyzers.

Our contribution combines malware-centric attributes with
intent-based features for malware detection and classifica-
tion. In particular, to overcome the drawbacks of previous
malware-centric methods, we propose a novel and feature-
rich hybrid anti-malware system, called Andro-Dumpsys.
Despite the various anti-analysis methods heavily utilized by
various malware families, all codes of malware are readable
by the Android platform upon executing them; our system
catches the moment the odex bytecode is loaded into the
memory section (Kim et al., 2015), and utilizes runtime arti-
facts for malware characterizations. In particular, our system
runs a target application on an emulator, extracts odex bytecode
- which collects parts of an application that are optimized before
booting (Khan, 2010) through volatile memory acquisition
(dynamic analysis) in order to address the obfuscation, packing,
and dynamic loading techniques. Then, our system parses
meaningful and relevant code patterns from the odex file and
creates a profile of each application. In particular, for captur-
ing the intent of malware creator, we leverage footprints,
including the serial number of a certificate, operation
codes (opcodes) in the odex files, and meta-data in
AndroidManifest.xml as feature vectors for malware char-
acterization. By comparing the profiles, our system can detect
and classify malware samples into related families. We also
observe that: 1) malware samples have unique behavior pat-
terns, 2) the malicious behavior is determined by operation
codes and requires a particular permission set (e.g., READ_SMS,
WRITE_SMS), and 3) such an operation code set influences the
behavior of the malware.

1.1. Contribution

1. We propose an integrated anti-malware analysis system which
considers both malware-centric information and malware
creator-centric information for malware analysis. Using the
malware creator-centric information simplifies the process
of malware analysis.

2. We propose a hybrid malware detection and classification
method coupled with volatile memory acquisition method.
To the best of our knowledge, our approach is the first au-
tomated anti-malware system to deal with the practical issue
related to sophisticated anti-malware analysis techniques
such as packing and dynamic loading.

3. Our system enables AV vendors to react efficiently to many
species of malware samples by conducting similarity match-
ing. Andro-Dumpsys facilitates the detection of new malware
including malware variants and zero-day malware. This is
further highlighted by experiments using real-world up-
to-date malware samples.

1.1.1. Organization

The rest of this paper is organized as follows. In section 2, we
review the related work. In section 3, we present the data ex-
ploration to find meaningful features for the anti-malware
system. In section 4, we present our anti-malware system,
Andro-Dumpsys. In section 5, we provide the performance
evaluation and results. In section 6, we discuss the limitation

COMPUTERS & SECURITY 58 (2016) 125-138 127

of our proposed method. Finally, we present concluding remarks
in section 7.

2. Related work
2.1. Sandboxing approach

Yan and Yin (2012) proposed DroidScope, a fine-grained dynamic
analysis framework built on top of QEMU. DroidScope lever-
aged low-level and high-level behavior characteristics, such as
native/Dalvik instruction traces and a set of APIs, and recon-
structed the behaviors of a malicious application. DroidScope
performed fine-grained and coarse-grained analysis. Thus, it
may suffer from high overhead of taint analysis. However,
DroidScope was implemented based on hooking mechanism
and needed to monitor a synchronized low-level and high-
level events. Reina et al. (2013) introduced CopperDroid, a
system-call centric framework for dynamic analysis.
CopperDroid conducted an integrated analysis to reconstruct
the behavior of a malicious application by leveraging OS-
specific information, such as system call invocations and IPC/
RPC interactions, and Android-specific information such as
sensitive information leakage and SMS. Rastogi et al. (2013) pro-
posed AppsPlayground by conducting dynamic analysis.
AppsPlayground executed a malicious application on an emu-
lator, and determined whether or not malicious activities are
being carried out by tracking sensitive information leakage
and monitoring sensitive API and system calls. However,
AppsPlayground required a modified Android framework for
malware analysis. In contrast with Andro-Dumpsys, these ap-
proaches can only analyze the part of the application actually
executed, and the malicious behavior must appear during ex-
ecution time for analyzing the malicious application. Andro-
Dumpsys executes the malicious application by leveraging
service and activity components in a manifest file. Since these
components are the entry point of the application, Andro-
Dumpsys can obtain bytecodes of the relevant execution phase.

Weichselbaum et al. (2014) introduced Andrubis, which is
an extension to Anubis (Anubis, 2011) for analyzing Android
malware. Andrubis was a fully automated analysis system
coupled with static and dynamic analysis methods. In the
static analysis step, Andrubis extracted information from
AndroidManifest.xml and dex bytecode of an application. In
the dynamic analysis step, Andrubis executed the applica-
tion in an emulated environment as in TaintDroid and Droidbox.
While executing applications, Andrubis monitored actions at
both the Dalvik Virtual Machine and the system level. Vidas
et al. (2014) presented A5, an automated anti-malware system
based on static and dynamic analysis. In the static analysis
phase, A5 extracted information from AndroidManifest.xml
and dex bytecode by leveraging open project tools such as
Androguard (Desnos, 2011) and Soot (Vallée-Rai et al., 1999).
The output of the bytecode is used in the dynamic analysis
phase. In the dynamic analysis phase, A5 conducted malware
analysis in a sandboxed environment, which consisted of mul-
tiple physical devices and emulators. A5 monitored network
threats presented on the Internet, executed the malicious ap-
plication, and generated network intrusion detection signatures.
Andrubis and A5 have implemented open source tools. That

means these frameworks are influenced by the weakness of
open source tools, and thus, these approaches fail to extract
meaningful behavior or code patterns from the application em-
bedding anti-malware analysis techniques (e.g., packing,
dynamic loading, and dex encryption).

2.2. Android permission monitoring

Enck et al. (2009) proposed the Kirin security service, a light-
weight certification service to mitigate malware at installation
time. Kirin examined the requested permissions of applica-
tions in a manifest file, and determined whether or not
malicious activities were executed by comparing them with
self-defined rules. Pearce et al. (2012) introduced AdDroid, which
separated advertising permissions for the Android platform from
the rest of permissions. In AdDroid, the host application and
the core advertising code are executed in an isolated environ-
ment where applications using AdDroid does not send private
information to an advertisement server. However, AdDroid has
a limitation to respond to information leakage unrelated to an
advertisement, which applies to the majority of mobile malware.
Peng et al. (2012) used probabilistic generative models for risk
scoring, ranging from the simple Naive Bayes to advanced
mixture models. Their methods compute a quantitative risk
score of applications based on the permissions in a manifest
file, and discriminate between malware and benign applica-
tions. Wang et al. (2013) introduced DroidRisk, a framework
based on quantitative risk assessment of permissions. By in-
dicating the risk levels of applications, they presented that a
reliable risk signal could be generated in order to warn poten-
tial malicious activities. Requested permission-based methods
rely completely on the permissions in a manifest file. However,
application developers tend to declare an excessive number
of permissions in a manifest file, despite the application does
not need them all. Thus, the capability of detecting and clas-
sifying malware with a high accuracy is limited, and requires
the methods based on other criteria to achieve higher classi-
fication accuracy (Enck et al., 2009; Pearce et al., 2012; Peng et al.,
2012; Wang et al., 2013). Zhang et al. (2013) proposed a VetDroid,
which is a dynamic analysis platform for reconstructing sen-
sitive behaviors in Android application. As leveraging API-
related permission table, VetDroid completely identified all
possible permission usage. However, permission-based detec-
tion methods are ineffective in identifying benign applications,
since relevant rule sets only focus on detecting the malware,
thus producing large false alarms.

2.3. Framework API monitoring

Arp et al. (2014) proposed DREBIN, which takes a hybrid ap-
proach and considers both permissions and sensitive APIs
as features. DREBIN performed a broad static analysis to extract
feature sets from both manifest file and dex bytecode. These
features are embedded in a vector space that helps DREBIN
identify malware automatically. Yang et al. (2014) proposed
DroidMiner, which uses static analysis automatically to mine
malicious behavior from a two-level behavioral graph repre-
sentation. DroidMiner considered the frequency or names of
APIs as well as the connections between multiple sensitive API

128 COMPUTERS & SECURITY 58 (2016) 125-138

functions. Zhang et al. (2014) proposed DroidSIFT, which clas-
sifies Android malware via weighted contextual API dependency
graph. To defend against variants and zero-day malware,
DroidSIFT leveraged graph similarity metrics for anomaly and
signature detections. Zhou et al. (2012) proposed DroidRanger,
which is malware detection method based on a permission-
based scheme and a heuristic-based scheme. However, these
approaches fail to parse meaningful code patterns from ap-
plications that embed anti-malware analysis techniques like
packing, dynamic loading, and dex encryption.

2.4. Memory acquisition

AndroDump which is a part of Androguard (Androguard, 2011)
enables dumping bytecode from a virtual machine. However,
AndroDump has a limitation to solve the current issue since
it just retrieves magic numbers of Java class files in the memory
for memory acquisition. Yu (2014) has proposed a volatile
memory acquisition method exploiting LIME (Linux Memory
Extractor), a type of the Linux Kernel Module (LKM). Since their
proposed method is dependent on the Android OS version, they
need cross-compile procedure whenever changing target
Android platform. Kim et al. (2015) proposed a novel tech-
nique to dump executable code from the memory section. They
modified the Dalvik Virtual Machine, tracked the process iden-
tifier of an application, and dumped bytecode in the memory
section. While they provide the basic framework, their pro-
posed technique requires modifying the Android OS, and yields
poor scalability in the malware analysis domain.

3. Data exploration

In order to extract the behavior pattern of malware, we adopt
the following as feature vectors: the serial number of a cer-
tificate, suspicious API sequence, permission distribution (a
critical permission set and its likelihood ratio), intent, and the
usage of system commands for executing forged files. We review
our previous works (Jang et al., 2015; Kang et al., 2015) and de-
termine metrics for malware analysis through the data
exploration. We used 906 malware samples and 1776 benign
samples in our experiments.

3.1 Serial number of a certificate

When releasing an application to the GooglePlay, an applica-
tion creator signs his application with the private key and a
certificate. When the creator generates the relevant certifi-
cate, there are blanks for writing the creator’s personal
information. However, the application creator can submit that
form with false information, since the process does not require
verification. The certificate has a unique serial number ac-
cording to the RFC 2459 (X.509) standard. We observe that a
small set of serial numbers is used in many malware samples.
To that end, we explore the serial number as a feature vector.
Given the dataset of malware, we extracted the serial number
of a certificate in each sample and studied the distribution of

* http://www.rfc-editor.org/rfc/rfc2459.txt

the serial numbers. With a total of 305 serial numbers ob-
served in all the malware samples, we found only 22 unique
serial numbers contributing 50% of the samples. This means
that malware creators frequently use certain certificates with
the same serial numbers. Among the 305 serial numbers, 19
numbers generated more than 2 malware families or 2 vari-
ants of each malware family. For primary screening, we made
a blacklist of 18 serial numbers through empirical experi-
ments by excluding an edge case. This is, we exclude
“93:6e:ac:be:07:f2:01:df” from the serial numbers, since it is a
standard test key for native applications built on a device or
an emulator.

3.2. On the uniqueness of serial numbers

Ground truth of the serial number is not of any importance
to our evaluation. Per the specifications of the X.509 digital cer-
tificate standard in RFC 2459, the serial number of each
certificate issued by a CA is unique and cannot be reused. Fur-
thermore, more important than the serial number is the key
associated with the certificate, which is used for verifying the
signed application: for using the serial number as a feature,
we make sure that the public key in the certificate is a unique
matching with the given serial number. The validity of the public
key associated with the certificate is verified against the sig-
nature of the certificate, establishing an association between
the serial number, the certificate, and application and the key
in the certificate.

Furthermore, we explored the serial number distribution in
benign samples. For benign samples, we crawled a variety of
popular applications with high rankings (as of March 2015) from
GooglePlay. Duplicate benign apps (sample) were excluded ac-
cording to their hash digest and package name. We extracted
the serial number of a certificate in each sample and studied
the distribution of the serial numbers. With a total of 1776 serial
numbers observed in all the benign samples, we found 1464
unique serial numbers contributing 82% of the benign dataset.
Furthermore, we found 136 serial numbers only generated more
than two kinds of benign applications; most of these applica-
tions are signed by Game/Application companies, or personal
developers. In short, we conclude that the serial number dis-
tribution in benign samples is different from that of malware
samples.

3.3. Suspicious API sequence

We explore the Application Programming Interface (API) of
Android SDK, as a feature vector. The API is a set of functions
provided conveniently to control the principal actions of Android
platform. It is more efficient to consider certain APIs fre-
quently used by malware than to consider all the APIs in
Android SDK. Seo et al. (2014) analyzed a large number of
malware samples and determined the suspicious APIs fre-
quently used by malware in a statistical manner. They compared
the frequency of their malware samples and benign applica-
tions, listing suspicious APIs. We updated their suspicious API
list with additional APIs by examining all the APIs that might
work in a similar way to suspicious APIs determined in Seo
et al. (2014). These APIs are involved in gathering the user’s

http://www.rfc-editor.org/rfc/rfc2459.txt

COMPUTERS & SECURITY 58 (2016) 125-138 129

private information or the system information, accessing Web
services, sending and deleting an SMS message, recording voice,
and accessing and reading the content provider, among other
actions. Although the malicious behavior is similar across mul-
tiple malware samples, the API patterns used in malware vary
according to the malware creators. To resolve this problem, we
convert the suspicious API into ASCII code. The transformed
letter (ASCII code) sequence represents the behavior pattern
of each malicious application. We name the ASCII code se-
quence the API sequence and use it as a feature vector.
Therefore, we chose suspicious API sequence as a feature vector
for malware analysis.

3.4. Permission distribution

We explore the permission as a feature vector. Peng et al. (2012)
compared two datasets of benign and malicious applica-
tions, and analyzed the distribution of permissions requested
by each dataset. They determined 26 risky permissions as the
critical permission set from the perspective of security and
privacy. In particular, they removed the INTERNET permission
because this permission is necessarily required for network
communication. Instead, INSTALL_PACKAGES, which is re-
quired in order to install additional packages, is included. The
listing of the permissions is shown in Fig. 1. We used the afore-
mentioned critical permission set in our system because they
explored permissions from a large dataset and carefully de-
termined that permission set. While requested permissions are
notified to users at installation time, there are other methods
of studying permission specification by analyzing API method
graphs (Au et al., 2012). The requested permissions declared
in a manifest file are not in fact necessary for the application
functionality. Au et al. (2012) brought the current requested per-
mission system into question and demonstrated that it was
incomplete. Accordingly, they specified a list of permissions re-
quired for every API call and provided the permission mappings.
In our system, we leveraged 26 critical permissions when ap-
plying PScout mapping that lists permissions required to use
an API in (Au et al,, 2012), along with the requested permis-
sion. PScout extracted the Android permission specifications
of multiple Android versions (2.2 - 4.0) using static analysis.
We named this feature the API-related permission. Benign and
malware applications have different requests of permissions.
Malware often requests more of the “critical permission set”

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION
BLUETOOTH
BLUETOOTH_ADMIN
CALL_PHONE READ_LOGS
GET_ACCOUNTS
INSTALL_PACKAGES READ_SMS

MOUNT_UNMOUNT_FILESYSTEMS

NFC RECEIVE_SMS

PROCESS_OUTGOING_CALLS
READ_CALENDAR
READ_CONTACTS
READ_HISTORY_BOOKMARKS

READ_PHONE_STATE

RECEIVE_MMS

for security and privacy. In our previous works (Jang et al., 2015;
Kang et al., 2015), we analyzed the distribution of that per-
mission set in benign and malware samples to calculate the
likelihood of the critical permission set. The distribution of the
permissions depends on the sample class (benign or malware).

By applying a Naive Bayes classifier, we calculate the like-
lihood of the critical permission set for each class. Peng et al.
(2012) used the critical permission set, by applying Naive Bayes
models to quantify the risk score of each application. The per-
missions should be relatively independent to multiply each
probability of permission. Au et al. (2012) showed that most
Android permissions have little correlation with other per-
missions except for 15 permission pairs in terms of API usage.
Most of the critical permissions we used are not included in
these pairs. Among the 15 permission pairs, only one pair
(ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION) is
highly correlated to each other. For reducing the complexity
of computation, we assume that critical permissions are rela-
tively independent in terms of the API usage.

Let n and m be the number of applications and the number
of critical permissions respectively. A permission vector of ap-
plication i is 6; =(61,6:2, ..., 6im), Where

_ |1 if an application i uses a critical permission k

wT {O otherwise ’

which are independent variables, since all permissions are rela-
tively independent. We put c¢; e {benign, malware}, indicating
the category of an application i. Then,

=

P(Ci ‘91) = P(Ci ‘Gi,ly 91'2, ey Gi,m) = P(Ci ‘ei,k).

~
i

1

Using Bayes’ rule, the conditional probability of ¢; given vari-
able 6., which informs about the use of the critical permissions,
can be written as:

P(Qi,k‘ci)'P(Ci)_

P(ci|6:x) = P(6,)

Then, the ratio of probabilities is calculated as:

P(malware|6;;) _P(6;x malware)- P(malware)
P(benign|6,;,) P(6,|[benign)-P(benign)

RECEIVE_WAP_PUSH
RECORD_AUDIO

SEND_SMS

WRITE_CALENDAR
WRITE_CONTACTS
WRITE_EXTERNAL_STORAGE
WRITE_HISTORY_BOOKMARKS
WRITE_SMS

Fig. 1 - Risky permissions.

130 COMPUTERS & SECURITY 58 (2016) 125-138

We assume P(c; = malware) = P(c; = benign); there is no in-
formation of the category of an application, and thus, we
suppose the application to select a variable of any category value
with a uniform distribution. By multiplying the probabilities
of permissions, the likelihood ratio (A) is:

P(c; =malware|6;) 11 P(6;x |c; = malware)

A 91' = " = N .
) P(c;=benign|6;) 1 P(6:k|c; =Dbenign)

One of the conditional probabilities becomes zero, then the
whole multiplication becomes zero. By calculating the condi-
tional probabilities with the Laplace estimator (Leung, 2007),
we avoid the worst case where a denominator is zero.

When the likelihood of the malware increases as com-
pared with that of the benign application, the likelihood ratio
(A) increases. Malware can be detected by comparing the like-
lihood ratio (A) of the critical permission set using some
predefined threshold value Tiz. Therefore, we choose the like-
lihood ratio (A) as a feature vector for malware detection.

3.5. Intent

An Android application does not have the unique entry point
that a program usually has in other operating systems. An
Android application has four components: activity, service,
broadcast receiver, and content provider. These four compo-
nents work independently, and each component delivers an
“intent” to other components to achieve the end goal of ap-
plications. The intent is delivered from one activity to other
activities, including specific instructions about what the ap-
plication has to do. We examined the intent-specific information
for detecting malware that hides SMS notification. These
malwares receive SMS messages with the highest priority, and
prevent the delivery of the intent to other applications. This
malicious behavior can be found by retrieving the intent filters
in a manifest file, AndroidManifest .xml.

3.6. Usage of system commands

We study the usage of system commands. The system com-
mands frequently used by malware are listed in Seo et al. (2014).
We revised the list by excluding the system commands with
low frequency in our dataset. We found system commands, such
as “ chmod”, “ insmod”, “ su”, and “ bash”, to be frequently used
by malware. Those system commands are executed after the
malware obtains the admin privilege of the device. Further, we
include gingerbreak and rageaginstthecage, which are types
of root exploit codes.

3.7. Existence of forged files

In order to circumvent the detection methods of AV vendors,
mobile malware hides the codes related to the execution of
malicious behavior in normal-looking applications and ex-
ecutes the malicious behavior by loading those applications.
However, some benign applications change the extension format
of update files to another extension format for security reasons.
In that case, utilizing file forging as a feature vector leads to
high false positives. In order to reduce the false positives, we

combine the two rules as a feature vector for malware detec-
tion: usage of system commands and the existence of forged
files. Forged files containing malicious codes are usually hidden
in assets, 1ib, and res folder, and system commands are
needed for executing the malicious codes (Seo et al., 2014).
Therefore, the combined rules are a good metric for detect-
ing malware that overcomes the aforementioned shortcoming;
we call the combined rules as “system commands for execut-
ing forged files” and use it as a feature vector.

4. System overview
4.1. Overview

As illustrated in the flow diagram in Fig. 2, we propose a hybrid
anti-malware system. Our system consists of a client compo-
nent that resides on a mobile device and a behavior profiling
and analysis system that resides on a remote server. The client
component collects the application’s information and sends
it to a remote server. The client sends only application-
specific information such as the hash digest of the apk file and
the package name. If the remote server fails to crawl that ap-
plication, the client sends the application file to the remote
server. The remote server analyzes the application informa-
tion and determines whether it is malicious or not.

The remote server has three components: crawler, reposi-
tory, and analyzer. A target application delivered from the client
or the crawler is passed to the repository. The repository com-
ponent retrieves analysis requests in its database when
receiving them from the client. If the repository component
fails to fulfill the client’s request, it fetches the crawler com-
ponent. The analyzer component analyzes a target application
passed from the client or repository component. After com-
pleting the analysis, the analyzer component notifies the
repository and client with the analysis results. The remote server
provides the web interface to users. If a user needs to check
whether a released application is malicious or not, the user
uploads the application file to the remote server. Accord-
ingly, the remote server performs the aforementioned processes.

The analyzer component consists of a footprints extrac-
tion and a decision processes, which are reviewed in the
following.

4.1.1. Footprints extraction process
The footprints extraction process consists of a memory ac-
quisition engine and a behavior-profiling engine.

(i) Memory Acquisition Engine (MAE): at the application level,
the apk file is represented as a compressed archive file
with meta-data, and the classes.dex inside the apk file
is Dalvik Executable, which is stored without compres-
sion and padded from the archive file. Dalvik bytecode
(dex) of an application is generally not optimized, since
it is executed by a DVM which can run on different ar-
chitectures. When the system installer performs installation
of a target application, optimization is done at installa-
tion time, where the dex file is optimized for the
underlying architecture, and an odex file is generated in

COMPUTERS & SECURITY 58 (2016) 125-138

131

»

Client

[MAnalysis
result
|

Analysis request
{ package name,
hash digest }

Server

Analyzer

Memory Acquisition
Engine

Behavior Profiling
Engine

Classification
Engine i

Detection Engine

Estimated

malware group

<
—

Repository

App file to analyze

Crawler

Crawled App file

NS

Fig. 2 - Overall procedure of Andro-Dumpsys.

the /data/dalvik-cache folder. In particular, if an ap-
plication embeds a packing or a dynamic loading method,
the odex file is allocated in a memory section after un-
packing or dynamic loading is completed.

The MAE dumps meaningful volatile memory sections
where a target application is allocated in an emulator.
For that, we embed the strazzere’s Native Develop-
ment Kit code®. The strazzere’s unpacker can unpack
elaborate packing methods, such as Apkprotect, Bangcle,
LIAPP, and Qihoo, without depending on gdb. The MAE
also dumps volatile memory sections of applications em-
bedding dynamic loading methods, including dex
encryption. The memory acquisition of MAE proceeds as
follows. First, the MAE retrieves a process ID (PID) of an
application using the package name of an application.
In order to avoid anti-debugging features using Ptrace,
MAE “steals” the memory section of a cloned process ID
(CID) which is never ptraced by recurring through the
given PID, /proc/(PID)/task/ (step 1 in Fig. 3). Next,
MAE retrieves the memory boundaries of a running CID
using /proc/(CID)/maps, and checks whether the packing
or dynamic loading method is adopted or not (step 2 in
Fig. 3). Finally, MAE attaches that process to PTRACE and
copies the memory layout whose signature is “dey” from
/proc/{CID)/maps (step 3 in Fig. 3). After capturing the
odex files, the MAE passes them to the profiling engine.
Behavior Profiling Engine: The Behavior Profiling Engine (BPE)
extracts the serial number from a certificate in the META-
INF folder. For efficiently searching and parsing relevant
information, BPE searches only files and the folders with
the same component name; our system sorts parsed
components in ascending order. If a target application

—
=
=

=

2 https://github.com/strazzere/android-unpacker

uses a dynamic loading method, BPE retrieves all smali
files because malicious codes can be hidden in the
dynamic loading files. The BPE retrieves the package
name, requested permissions, component names and
intents in a manifest file, AndroidManifest .xml, and ex-
tracts meaningful features from smali code, according
to the aforementioned component name. Following the
codes whose names are components, the system ex-
tracts suspicious APIs, system commands, and API-
related permissions. Moreover, our system checks
whether a forged file exists in appendix folders such as
assets, res, and 1ib folders. The BPE captures the foot-
prints of a target application, and then it creates the
profile of a target application, and passes it to the De-
tection Process.

4.2. The decision process
4.2.1. Detection engine
Our detection engine (DE) determines whether a target appli-
cation is malicious or not based on its behavior patterns. The
DE contains detection rules, which consist of the serial number
list, a rule for examining the usage of system commands to
execute forged files, a rule for hiding SMS notifications, a rule
for detecting smishing (SMS phishing) applications, the rule
of checking leakage of sensitive information, and the likeli-
hood ratio (A) of requested and API-related critical permission
set. The detection algorithm starts by comparing the applica-
tion’s serial number with a blacklist for primary screening.
We only extract the serial numbers that generate families
or variants of malware more than a threshold Tsy. In our dataset,
there were some applications signed by the serial number in
the blacklist but do not exploit any suspicious APIs explained
in section 3. In that case, we discard these applications to avoid

https://github.com/strazzere/android-unpacker

132

COMPUTERS & SECURITY 58 (2016) 125-138

android@android-virtual-machine: ~/Desktop/Andro_Dumpsys/Analyzer

13 4) 239PM 1R android

Starting: Intent { cmp=com.jb.gosms/.ui.security.KeywordNumberPreActivity }

Memory Dump for Android Application <changkr

This code derived from Strazzere's Unpacker <d1ff@1ookout com> and modified

Hunting for com.jb.gosms
2002 is service pid
2039 is clone pid

data/data/com]b osns.
| Found DynaM\c Load\ng
oading Applicati ———
--5 00082000 1f: 61
;Agg_‘le/plugin gservices.apk
ICZDLOOO 4c49e000 r--p 00000000 1f:01 545

Ie/plug\n dex/plugin_gservices/plugin_gservices.dex
/data/data/conm. jb. gOSNS/llb/lIb

) 4c9cdo00-4c9d1000 r-xp 00000000 1f:01 577

‘¢0;msHan112P\ny\n S0
dc9d1000 4c9d2000 rw-p 00003000 1f:01 577

?OSNRHanlZP\nVln S0
ﬁ[+] odex found in memory!

"“Jdata/data/com.

[
[
[
I Stepl.
1
|

|

/data/data/com. jb.gosms /app_cac

\
Step 2.

/data/data/com.jb4gosms/1ib/liﬂ

y n[] Attempting to dump memory region 0x4c2b2000 to 0x4c49e000

I[+] dumped file stored to :
1

/data/local/tmp/com. jb.gosms.dumped_odex
Iye start to search non_dynamic_loading_odex in memory

j0ccasionally, can not catch dex file with dynamic loading files!
I[+] Attempting to dump memory region 0x4b9c8000 to 0x4c11d600
P[+] non_dynamic_loading_dumped file stored to : /data/local/tmp/com.jb.gosms. du

ﬂ rﬁped_odex_non_dynamic

=) Memory Dumping Success!!!

Fig. 3 - Memory acquisition procedure: Our system finds the process ID and cloned process ID in step 1, checks whether or
not the packing or dynamic loading method is adopted in step 2, and dumps the bytecode in step 3.

over-fitting. Secondly, we check the usage of the system com-
mands for executing forged files. The next detection step is to
find malware that hides SMS notification. The purpose of hiding
SMS notification is to subscribe to premium services, or is to
receive SMS commands from a command and control (C&C)
server. These applications use the intent filter and API methods
related to received SMS handling, request the highest prior-
ity for SMS notification, and call abortBroadcast () to hide
SMS notification to the users. This step checks whether an ap-
plication leverages the aforementioned methods and intent
filters for detecting malicious behavior.

Similar to premium-rate SMS, a smishing application re-
ceives SMS messages including C&C messages from a remote
server, and sends hijacked sensitive information (e.g., call
history, SMS content, location information, and digital certifi-
cate for financial transaction; mainly applicable to the context
of South Korea). In this case, the smishing application hides
the SMS notification while the malicious behavior is ex-
ecuted. In the final step, the algorithm calculates the likelihood
ratio (A) of the critical permission set. Two likelihood ratios are
obtained using the requested critical permission set and the
API-related critical permission set. If the values are both greater
than a threshold Tiz, then we consider the application to be
malicious. To compensate for the limitations of the permission-
based methods, we also check whether an application sends
SMS messages or not, by calling abortBroadcast ().

4.2.2. Classification engine

The proper similarity metrics are applied to different types of
behavior components using the aforementioned features. The
classification engine (CE) calculates the similarity score between
the profile of a target application and the representative profile
of each malware group. The CE then assigns the malware to
the most similar behavior group. The representative profile of

each malware group has to depict the common behavioral pat-
terns of each malware group. Then, the CE chooses one of the
update methods for the representative profile as follows:

1. Dumpsys-INT: The representative profile for each malware
group is updated by an intersection of the profiles of
members in each group. In the update method of Dumpsys-
INT, as the number of members of each group increases,
the number of the representative profile decreases.

2. Dumpsys-UNI: The representative profile for each malware

group is updated by a union of the profiles of the members
in each group. In the update method of Dumpsys-UNI, as
the number of members of each group increases, the number
of the representative profile increases.
The similarity score is defined as the weighted similarity
sum of 3 behavior components. The similarity score between
the profile of a target application and the representative
profile for each group is given by:

S=3Y w;-BCS; where Y w;=1, (1)

where BCS; and w; are the similarity of behavior component i
and weight of behavior component i, respectively. The behav-
ior component similarity (BCS) is composed of three parts:
similarity of suspicious API sequence, usage of system com-
mands for executing forged files, and usage of critical
permission set (requested and API-related critical permis-
sions). We set the weight parameter (wi) at 1/3 (the arithmetic
mean). Finally, we compute the similarity score for each be-
havior component as follows:

1. We calculate the similarity score for a suspicious API se-
quence. According to our pre-defined suspicious API

COMPUTERS & SECURITY 58 (2016) 125-138 133

dictionary, we create a distinct API sequence of each
malware. In order to compare the suspicious API sequence
of a target with others, we convert the APl method into ASCII
code. The transformed letter sequence represents the be-
havior pattern of each malware. We adopted the Needleman-
Wunsch algorithm (Needleman and Wunsch, 1970) for
finding the optimal global alignment between two se-
quences. The value of the similarity score is in the interval
[0, 1]. There is no clean form of mathematical expression
for this similarity - using the Needleman-Wunsch algo-
rithm, 1 is assigned for match, -1 assigned for mismatch,
and -2 is assigned for gaps; the similarity score is the sum
of the scores normalized by the length of the larger of the
two sequences.

2. We calculate the similarity score for the usage of mali-
cious system commands for executing forged files by
applying the Jaccard coefficient. The Jaccard coefficient of
two sets is defined as the number of attributes in an
intersection divided by the number of attributes in a
union of the two individual sets. The order of the mali-
cious command is insignificant. The value of the similarity
score is in the interval [0, 1]. For two sets of malicious
system command usage defined as A and B, the
mathematical expression of the Jaccard coefficient is
defined as:

_lang
[AUB|’

J(A,B)

(2)

3. We calculate the similarity score for the usage of the criti-
cal permission set by averaging the similarity for requested
critical permissions and API-related critical permissions. We
apply the Levenshtein distance to compute the similarity
of the critical permissions; it calculates the minimum
number of edits required to make two strings identical. The
order of the critical permissions is insignificant; therefore,
we applied the Levenshtein distance after sorting the criti-
cal permissions. A value of similarity is defined as the
number of edits divided by the maximum length of strings,
and it is in the interval [0, 1]. Mathematically, for two strings
(corresponding to the critical permission usage), the
Levenshtein distance is defined as:

max(i, j) min(j, j)=0
.. levg,(i-1,j)+1
1 ab\b)= . T .
&Vas(i,) min{lev,,(i,j-1)+1 otherwise G)
leVa’b (1 - 1,) - 1) + 1(ﬂ|¢b))
where 1, is the indicator function equal to 0 when a; =g

and equal to 1 otherwise.

The CE classifies a malicious application into the behavior
group with the highest similarity score, which is the pre-
defined threshold of at least 0.75. We assume that 0.75 is a
sufficiently high score to determine if two signatures are similar.
Whenever a new malicious sample is queued into Andro-
Dumpsys, the CE updates the representative profile according
to the pre-chosen update method. The CE seamlessly updates
the likelihood of the critical permission sets and the blacklist
of serial numbers at every weekly interval.

5. Performance evaluation
5.1. Implementation

Our anti-malware system consists of a client device and a
server. The client was installed on a mobile device (SM-
N900K) running on Android 4.4.2, and the three components
(crawler, repository, and analyzer) were installed on the remote
server. The remote server had an Intel Xeon X5660 processor
(running at 2.8GHz) and 8 GB of RAM. The remote server runs
an Ubuntu 12.04 LTS (64-bit) operating system. We performed
all experiments in a virtualization environment?®. We imple-
mented Andro-Dumpsys using the Python programming
language (as scripts) and the PHP web programming lan-
guage. The remote server was composed of the MAE, BPE, DE,
and CE. Among these, the MAE was implemented as a python
script coupled with an Android emulator. The emulator was
run on the Android 4.1.2 (level 16). The MAE passed the odex
bytecode of a target application to the BPE and restored the
emulator to the initial state only for reducing noise.

5.2. Experimental setup

For performance evaluation, Korea Internet and Security Agency
(KISA) offered 906 malware samples* representing 13 malware
families; these malware samples include up-to-date smishing
and spy applications reported by mobile telecommunication
companies and the Ministry of National Defense in South Korea.
For benign class of applications, we downloaded a variety of
popular applications with high rankings (as of March 2015) from
GooglePlay. To further sanitize these benign samples, we also
excluded samples diagnosed by at least one AV vendor, in-
cluded in the VirusTotal dataset (VirusTotal, 2004). As a result,
1776 benign samples were used for our experiment. Dupli-
cate malware samples were excluded according to their hash
digest, and duplicate benign samples were excluded accord-
ing to their hash digest and package name. We used the textual
description produced by F-Secure (F-Secure, 1988) as a name.
We used 5-fold cross-validation for the evaluation of our work.
In a k-fold cross-validation method, data are divided into k folds,
where k — 1 folds are used for training, and the k-th fold is used
for testing. We rerun the evaluation by alternating the testing
fold among the k folds, and compute the evaluation metrics
each time. Finally, we average our results across the k runs (for
the k folds). Our system was configured with the threshold
values Tz =1 and Tsy = 1. It is reasonable to set Ti; as 1, which
implies that our system detects a target application as mali-
cious if the likelihood of malware is higher than that of a benign
application. It is also reasonable to set Tsy as 1, according to
data exploration described in section 3. We make a blacklist
of serial numbers and the likelihood of the critical permis-
sion sets based on the training dataset.

* VMWare ESXi; http://www.vmware.com/
* Our dataset is available at http://ocslab.hksecurity.net/
andro-dumpsys

http://www.vmware.com/
http://ocslab.hksecurity.net/andro-dumpsys
http://ocslab.hksecurity.net/andro-dumpsys

134 COMPUTERS & SEGURITY 58 (2016) 125-138

Table 1 - The detection results of packed malware.

Packing method Quantity Detect Miss
Apkprotect 6 6 0
Bangcle 4 4 0
None (+Lite?) 896 (130) 880 (130) 16 (0)
Sum 906 (130) 890 (130) 16 (0)

Lite: Apkprotect Lite, which only adds non-existing opcode.

5.3. Experimental results and analysis

In the following, we evaluate the performance of our system
based on the effectiveness and the efficiency of detecting and
classifying malware families.

5.3.1. Effectiveness of malware detection

We demonstrate that Andro-Dumpsys is effective in distin-
guishing malware from benign samples using the data in §5.2.
As a result of this experiment, eight benign samples, corre-
sponding to 0.45% of all benign dataset (false positive), were
detected as malicious, whereas 16 malware samples, corre-
sponding to 1.77% of all malware dataset, were detected as
benign (false negative).

We note that, and as shown in this experiment, the anti-
malware system must distinguish malware from benign
applications with small errors, measured by both small values
of false positive and false negative. We note that such find-
ings are in line with the state-of-the-art: in the prior work (Feng
et al., 2014), 10% false negative and 0.14% for false positive are
achieved.

We demonstrate that Andro-Dumpsys provides a high true
positive by identifying packed and malicious application as
malware. As shown in Table 1, our system enables us to detect
all packed malware samples, including smishing applica-
tions. However, as shown in Table 2, we find that some benign
samples were labeled as malware in our system, which we
explore further. We found that our system considered the ap-
plications providing free messaging (or call) services as malware,
due to similar behavioral pattern with smishing. Some AV ap-
plications had the intent filter related to received SMS handling
with high priority and codes for sending SMS messages; we
presumed AV applications did not need these codes: super-
fluous privilege. We found that our system misclassified other
applications providing spam-blocking service as malware.

To this end, we conducted an in-depth analysis in order to
understand the false negatives generated by Andro-Dumpsys.
Most of the false negatives circumvented our detection rules.
In particular, upon further examination, we found that missed
malware samples replicate and send smishing messages to their

Table 2 — The effect of detection rules.

Detection rule Malware Benign
Blacklist of serial number 515 0
Hiding SMS notifications 295 6
Pattern of smishing 80 2
Likelihood ratio 0 0
Total detected malware 890 8

Table 3 - The change of detection and decay rate for
each feature attribute set (e.g., malware).

Case Feature attribute set Detect Decline
rate (%)
0 SN2, API®, Perms, Intent, 890 -
Commands?
1 SN, API, Perms, Commands 676 24.04
2 API, Perms, Intent, Commands 759 14.72

SN2: serial number of a certificate, API°: API sequence, Perm®: per-
mission distribution, Commands?: intersection of the usage of system
commands and the existence of forged files.

friends found in contacts, without hiding the malicious be-
havior. Some malware samples only request victim’s financial
secret card number (sensitive information widely used in South
Korea), and transfer that sensitive information to the cre-
ator’s remote server. Others hijack sensitive information, such
as locations, call recordings, and call history, as a normal ap-
plication, and transfer them to the creator’s remote server.

We note that there is a trade-off between false positives and
false negatives. We adjusted loose rules for reducing false posi-
tives, which caused our system to produce more false negatives.
As for false negatives, Andro-Dumpsys failed to find mali-
cious behavior through parsed footprints. However, the false
negative rate is low, about 1.77%, compared to 10% false nega-
tive in recent work such as Feng et al. (2014), as mentioned
earlier.

Additionally, we evaluated our approach using the serial
number only to demonstrate the effectiveness of serial number-
based detection, as shown in Table 2. As a result, 515 malware
samples, corresponding to 56.84% of malware in our dataset,
were filtered as malicious, and all benign samples were fil-
tered as benign. Our primary screening provided effective and
efficient malware detection by retrieving only certificate in-
formation. We note that while such approach is not inclusive
of all malware, it is an efficient first-line filter of malware.

Finally, we conduct an analysis to determine the relative
importance of features: what features have more influence on
detection rate. For that, we highlight the detection decline ratio
of the 906 malware samples in §5.2. Table 3 shows the results.
Our baseline (case 0) corresponds to the scenario where all fea-
tures are used, and two other cases correspond to scenarios
where some features are discarded. In all cases, features are
sorted in a descending order based on their contribution to our
system’s performance. In the first case (case 1), the ratio is de-
graded by 24.06% compared with the base case, whereas in the
second case (case 2), the decline was by 14.72%, which high-
light the significant contribution of the intent and serial number
features to the performance.

5.3.2. Effectiveness of malware classification

We demonstrate the effectiveness of Andro-Dumpsys in
malware classification. For that, we study the false positives
and false negatives of classifying 13 malware families and
benign applications. Table 4 shows the results, under the same
settings shown earlier. We found that Andro-Dumpsys per-
formed well in classifying malware families, producing 12 and
13 false positives and false negatives on average respectively.

COMPUTERS & SECURITY 58 (2016) 125-138 135

Table 4 - Malware samples and benign samples for
experiments.

Category Family Dumpsys-INT Dumpsys-UNI
FPs FNs FPs FNs
Malware Smforw (130) 66 25 66 24
(906) FakeBank (141) 24 10 23 12
FakeKRBank (123) 6 10 11 6
WroBa (117) 8 72 10 74
Fakeinst (88) 31 19 31 18
SmsSpy (79) 7 16 1 18
MisoSMS (52) 3 0 4 0
None? (43) N/A® N/A N/A N/A
Gidix (40) 14 0 14 0
Recal (25) 0 0 0 0
SmsSend (25) 0 19 0 20
TelMan (21) 5 3 4 2
Helir (12) 4 0 4 0
Fakeguard (10) 0 0 0 0
Benign 6 8 6 8
(1776)
Average 12 13 12 13

FPs, FNs refer to false positives, false negatives.

None?: F-Secure fails to produce textual description; false nega-
tives of F-Secure.

N/AP: We rule out malware whose textual description is none, when
calculating FPs and FNs.

Bold text indicates the number of misclassified samples in our
experiments.

Malware families, such as FakeKRBank, MisoSMS, Gidix, Recal,
Helir, TelMan, and Fakeguard, were classified with low false
positives and false negatives. However, the performance of clas-
sifying malware families such as wroBa, Fakeinst, and SmsSend
was relatively low.

Some factors may affect classification of those families. By
further exploration, we found that wroBa disguises itself as a
GooglePlay application. If a victim launches the fake applica-
tion, it seems to replace legitimate banking application with
a malicious one, steals sensitive information, and monitors vic-
tim’s device in the background (Paganini, 2013). The SmsSend
sends SMS messages to a premium-rate number, and Fakeinst
is an application installer that sends SMS messages to premium
rate numbers (F-Secure, 2014).

However, in our data context, these malware families have
different characteristics. They replicate and send the same SMS
messages to recipients found in contact provider, and they also
capture the incoming SMS messages and steal sensitive in-
formation (e.g., call log, contact information) to send it to the
creator’s remote server. To this end, they use an SMS message
as a Command & Control (C&C) channel to communicate with
a C&C server. Our system classifies these malware into similar
behavior groups according to more granular malicious behav-
ior criteria, while F-Secure’s descriptions of these malware fail
to capture all malicious behavior of malware. Since the F-Secure
textual description provides fragmentary and broad mali-
cious behavior, we believe our classification results are more
specific.

5.3.3. Effectiveness of detecting zero-day malware
We demonstrate the effectiveness of identifying zero-day
malware. We define a zero-day malware as an application that

has suspicious behaviors but is not previously detected by AV vendors.
We leveraged 10 malware samples offered by the Korea Inter-
net and Security Agency (KISA). We uploaded those samples
to the VirusTotal and checked the scanning results of various
AV vendors, such as F-Secure, Avast, TrendMicro, Symantec,
Kaspersky, McAfee, ClamAV, Sophos, and nProtect, among
others. Through this scan, we noted that none of those appli-
cations is detected by any AV vendor as malware. However,
Andro-Dumpsys detected all of the zero-day malware samples,
having 100% detection accuracy. Note that in evaluating the
zero-day samples on Andro-Dumpsys, we did not use any fea-
tures extracted from those samples in the training process, and
discriminative features of those zero-day samples are ob-
tained through the analysis of the dataset highlighted above,
which pertains to mass-market malware (Mohaisen and Alrawi,
2014).

5.3.4. Efficiency of malware classification

We examine the efficiency of our system across multiple cri-
teria. First, we performed experiments to evaluate overhead
of Andro-Dumpsys. For that, we selected 10 benign samples
and 10 malware samples. The size of the benign samples was
in the 40-50 MB range, and the malware samples were in the
6-20 MB range. We measure the CPU and memory utilization
using the vmstat command, and measured the network uti-
lization using i fstat command. We define the CPU utilization
as the percentage of total CPU time spent running instruc-
tions of an application; we exclude the booting time of the
emulator. And we define the memory utilization as the ratio
of the amount of memory used by an application to the total
amount of memory, and the network utilization as the ratio
of current network traffic to the maximum traffic that the port
can handle respectively; we exclude network traffic transfer-
ring an application between a server and a client when
calculating current network traffic. Table 5 shows the average
CPU, memory, and network usages introduced by Andro-
Dumpsys. We find that the system overhead is less than 13%
in all evaluation criteria; i.e., our proposed system has a rea-
sonable performance impact on the server side, as compared
to analyzing benign applications. Furthermore, that system over-
head is dependent on hardware specification in use. Given that
this evaluation is on a single processor without optimization,
we further theorize that an optimized and multi-threaded
system will allow for both horizontal and vertical scaling of
the system, and benefit from unused resources.

We found that our system takes 74.18 seconds per mega-
byte to detect and classify malware samples. The majority of
this time is spent creating the profile: it takes only 0.04 seconds
on average to detect and classify malware into similar behav-
ior groups. The overall elapsed time for analysis can vary
according to the size of the code of malware, and hardware
specification of the analysis system. The analysis time of system

Table 5 — The overhead of Andro-Dumpsys.

Category Benign Malware
CPU 12.04% 12.12%
Memory 6.62% (0.5 GB) 13.64 % (1.1 GB)
Network 0.003% 0.003%

136 COMPUTERS & SECURITY 58 (2016) 125-138

has a fluctuation with certain mean and variance according
to the number of entry points. In particular, analysis time ranges
from 2.97 seconds per megabyte to 1667.1 seconds per mega-
byte (maximum). Note that the actually analyzed contents in
our system are small in size. This is, the Android applica-
tions contain bytecode (classes.dex) in the form of Dalvik
Executable (dex) file. The DEX specification limits the total
number of methods that can be referenced within 2%, includ-
ing framework and library methods, and self-defined methods.
That means dex is limited in size, regardless of the size of the
application itself, which could be multiple gigabytes of code
and supporting media (images, video, etc). Our system re-
trieves bytecode files (smali) based on component names in
a manifest file, and determines whether or not a given
application is malicious (not with an exhaustive search in
contents).

6. Limitation

Andro-Dumpsys has a few limitations, since it extracts odex
bytecode through dynamic analysis and employs static analy-
sis to capture malware’s behavior. First, the volatile memory
acquisition process depends on emulator-based execution, and
so, it is limited in analyzing malware embedding more sophis-
ticated packing with obfuscation methods. For that, our system
cannot attach Ptrace to extract meaningful bytecode in memory,
resulting in a less meaningful analysis. Second, it is difficult
for our system to analyze malware that is executed only under
certain given conditions (e.g., shared library). These draw-
backs are common in dynamic analysis and are addressed in
the previous work in various ways. Depending on the number
of malware samples to be analyzed, we can adopt manual in-
spection and feedback to analyze malware samples.

Second, the forgery of a certificate may significantly degrade
the results of our system. We note that would only affect the
part corresponding to the primary screening, and other fea-
tures utilized in our system can still be useful: based on our
experiments, the performance of our system was degraded by
only 15% as a result of manipulating certificate features. Fur-
thermore, the forged signature does not affect low-level
certificate-related features. While the malware creators change
their certificates, they do not change the core patterns of ma-
licious behavior. For similar reason, AV vendors continuously
update the signature database to respond to a large number
of malware samples daily.

Finally, our system’s overall CPU workload and elapsed
time can differ based on the hardware specification. In this
study, no optimizations are taken into account for perfor-
mance evaluation, and the evaluation is used as rather a
demonstration of how reasonably quickly the function of our
system can be performed. In our future study, we plan to
conduct an optimization of our system and compare ours
with other approaches in the literature. In particular, to reduce
average CPU usage, we may need to optimize for the idle
time in the engines (e.g.,, Memory Acquisition Engine and
Behavior Profiling Engine). For example, we may retrieve can-
didate entry points in AndroidManifest .xml. However, these
entry points are not guaranteed to obtain bytecodes of an
application.

7. Conclusion

In this paper, we proposed Andro-Dumpsys, an anti-malware
system exploiting footprints obtained from volatile memory
acquisition. Andro-Dumpsys can distinguish benign and ma-
licious applications and classify malicious applications into
similar groups. Furthermore, Andro-Dumpsys enables us to
detect zero-day malware, which are missed by all antivirus scan-
ners. Our experiments demonstrated that Andro-Dumpsys
performs well in detecting malware with an accuracy of over
99% and classifying each malware family with low false
positives/negatives. Our system hence enables AV vendors and
security practitioners to respond to malware by detecting and
classifying effectively and efficiently.

There are several directions that we will pursue in the future.
First, our system conducts the volatile memory acquisition
process on Dalvik Virtual Machine, not the Android Runtime
(ART). Despite that the market share of the Lollipop is less than
2%, we will consider the volatile memory acquisition method
on ART in the future for completeness of our results. Further-
more, we will upgrade our system to analyze malware
embedding elaborately evolving anti-malware analysis
techniques.

Acknowledgments

This work was also supported by the ICT R&D Program of MSIP/
IITP [14-912-06-002, The Development of Script-based Cyber
Attack Protection Technology]. In addition, this research is also
supported by a Korea University Grant.

REFERENCES

Androguard. Reverse engineering, Malware and goodware
analysis of Android applications. <https://code.google.com/p/
androguard/>; 2011. [accessed 30.06.15].

Anubis. Anubis — Malware Analysis for Unknown Binaries.
<https://anubis.iseclab.org/>; 2011.

Apkprotect. <http://www.apkprotect.com/>; 2013 [accessed
30.06.15].

Arp D, Spreitzenbarth M, Hiibner M, Gascon H, Rieck K, Siemens
C. Drebin: Effective and explainable detection of android
malware in your pocket. In: Proceedings of the 21th Annual
Network and Distributed System Security Symposium (NDSS
“14); 2014.

Au KWY, Zhou YF, Huang Z, Lie D. PScout: Analyzing the Android
Permission Specification. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security. CCS
’12; 2012. p. 217-28.

Bangcle. <http://www.bangcle.com/>; 2014 [accessed 30.06.15].

Desnos A. Androguard. <https://code.google.com/archive/p/
androguard/>; 2011.

Enck W, Ongtang M, McDaniel P. On Lightweight Mobile Phone
Application Certification. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security. CCS
’09; 2009. p. 235-45.

°> The statistic about market share of each Android OS version
is available at http://www.statista.com/statistics/271774/share
-of-android-platforms-on-mobile-devices-with-android-os/

http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0010
https://code.google.com/p/androguard/
https://code.google.com/p/androguard/
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0015
https://anubis.iseclab.org/
http://www.apkprotect.com/
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0025
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0025
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0025
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0025
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0025
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0030
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0030
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0030
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0030
http://www.bangcle.com/
https://code.google.com/archive/p/androguard/
https://code.google.com/archive/p/androguard/
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0045
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0045
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0045
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0045
http://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
http://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

COMPUTERS & SECURITY 58 (2016) 125-138 137

F-Secure. Protect your life on every device - Internet security for
device. <https://www.f-secure.com/en/web/home_global/
home>; 1988 [accessed 30.06.15].

F-Secure. Threat Report H1 2014. <https://www.f-secure.com/
documents/996508/1030743/Threat_Report_H1 2014.pdf>;
2014 [accessed 30.06.15].

Feng Y, Anand S, Dillig I, Aiken A. Apposcopy: Semantics-based
detection of android malware through static analysis. In:
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM;
2014. p. 576-87.

Jang]J, Yun J, Woo J, Kim HK. Andro-profiler: Anti-malware
System Based on Behavior Profiling of Mobile Malware. In:
Proceedings of the Companion Publication of the 23rd
International Conference on World Wide Web Companion.
WWW Companion '14; 2014. p. 737-8.

JangJ, Kang H, Woo J, Mohaisen A, Kim HK. Andro-AutoPsy: anti-
malware system based on similarity matching of malware
and malware creator-centric information. Digit Invest
2015;14:17-35.

Kang H, Jang J, Mohaisen A, Kim HK. Detecting and classifying
android malware using static analysis along with creator
information. Int J Distrib Sens Netw 2015;2015:d0i:10.1155/
2015/479174. Article ID 479174.

Khan A. What Is Odex And Deodex In Android. <http://www
.addictivetips.com/mobile/what-is-odex-and-deodex-in
-android-complete-guide/>; 2010 [accessed 30.06.15].

Kim D, Kwak J, Cheol Ryou J. DWroidDump: executable code
extraction from android applications for malware analysis.
Int J Distrib Sens Netw 2015; http://dx.doi.org/10.1155/
2015/379682.

Leung KM. Naive Bayesian Classifier. Polytechnic University
Department of Computer Science/Finance and Risk
Engineering; 2007.

McAfee. McAfee Labs Threats Report, November 2014. <http://
www.mcafee.com/ca/resources/reports/rp-quarterly-threat
-q3-2014.pdf>; 2014 [accessed 30.06.15].

Mohaisen A, Alrawi O. AV-Meter: An Evaluation of Antivirus
Scans and Labels. In: Detection of Intrusions and Malware,
and Vulnerability Assessment - 11th International
Conference, DIMVA 2014, Egham, UK, July 10-11, 2014.
Proceedings; 2014. p. 112-31. http://dx.doi.org/10.1007/
978-3-319-08509-8_7.

Mohaisen A, Alrawi O, Mohaisen M. AMAL: high-fidelity,
behavior-based automated malware analysis and
classification. Comput Secur 2015;d0i:10.1016/
j.cose.2015.04.001.

Needleman SB, Wunsch CD. A general method applicable to the
search for similarities in the amino acid sequence of two
proteins.] Mol Biol 1970;48(3):443-53.

Paganini. Android Wroba banking Trojan targeted Korean users.
<http://securityaffairs.co/wordpress/19041/malware/
android-wroba-trojan-korea-banks.html>; 2013 [accessed
30.06.15].

Pearce P, Felt AP, Nunez G, Wagner D. AdDroid: Privilege
Separation for Applications and Advertisers in Android. In:
Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security. ASIACCS '12; 2012.
p.71-2.

Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, et al. Using
Probabilistic Generative Models for Ranking Risks of Android
Apps. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security. CCS ’12; 2012.

p. 241-52.

Rastogi V, Chen Y, Enck W. AppsPlayground: automatic security
analysis of smartphone applications. In: Proceedings of the
third ACM conference on Data and application security and
privacy. ACM; 2013. p. 209-20.

Reina A, Fattori A, Cavallaro L. A system call-centric analysis and
stimulation technique to automatically reconstruct android
malware behaviors. In: EuroSec; 2013.

Seo SH, Gupta A, Mohamed Sallam A, Bertino E, Yim K. Detecting
mobile malware threats to homeland security through static
analysis.] Netw Comput Appl 2014;38:43-53.

Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V.
Soot-a Java bytecode optimization framework. In: Proceedings
of the 1999 conference of the Centre for Advanced Studies on
Collaborative research. IBM Press; 1999. p. 13.

Vidas T, Tan J, Nahata J, Tan CL, Christin N, Tague P. AS:
Automated analysis of adversarial android applications. In:
Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices. ACM; 2014. p. 39-
50.

VirusTotal. VirusTotal — Free Online Virus, Malware and URL
Scanner. <https://www.virustotal.com/en/>; 2004 [accessed
30.06.14].

Wang Y, Zheng], Sun C, Mukkamala S. Quantitative Security Risk
Assessment of Android Permissions and Applications. In:
Data and Applications Security and Privacy XXVII. Lecture
Notes in Computer Science; 2013. p. 226-41.

Weichselbaum L, Neugschwandtner M, Lindorfer M, Fratantonio
Y, van der Veen V, Platzer C. Andrubis: Android malware
under the magnifying glass. Technical Report TRISECLAB-
0414-001; Vienna University of Technology; 2014.

Yan LK, Yin H. DroidScope: Seamlessly Reconstructing the OS
and Dalvik Semantic Views for Dynamic Android Malware
Analysis. In: USENIX security symposium; 2012. p. 569-84.

Yang C, Xu Z, Gu G, Yegneswaran V, Porras P. DroidMiner:
automated mining and characterization of fine-grained
malicious behaviors in android applications. In: Computer
security - ESORICS 2014, vol. 8712 of Lecture Notes in
Computer Science. Springer International Publishing; 2014.

p. 163-82.

Yu R. Android Packer facing the challenges, building solutions.
<https://www.virusbtn.com/pdf/conference_slides/2014/Yu-
VB2014.pdf>; 2014 [accessed 30.06.15].

Zhang M, Duan Y, Yin H, Zhao Z. Semantics-Aware Android
Malware Classification Using Weighted Contextual API
Dependency Graphs. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. CCS
'14; 2014. p. 1105-16.

ZhangY, Yang M, Xu B, Yang Z, Gu G, Ning P, et al. Vetting
Undesirable Behaviors in Android Apps with Permission Use
Analysis. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer; Communications Security. CCS '13; 2013. p. 611-
22.

Zhou Y, Wang Z, Zhou W, Jiang X. Hey, You, Get off of my Market:
Detecting Malicious Apps in Official and Alternative Android
Markets. In: Proceedings of the 19th Annual Network and
Distributed System Security Symposium(NDSS ’12); 2012.

Jae-wook Jang is taking a doctoral degree course in Graduate School
of Information Security, Center for Information Security Technolo-
gies (CIST), in Korea University. His research interests include mobile
malware analysis, network security, and intrusion detection. Contact
him at changkr@korea.ac.kr

Hyunjae Kang received a master’s degree course in Graduate School
of Information Security, Center for Information Security Technolo-
gies (CIST), in Korea University. Her research interests include mobile
malware analysis and computer security. Contact her at
janetk1004@gmail.com.

Jiyoung Woo received her Ph.D in Industrial Engineering from Korean
Advanced Institute of Science and Technology in 2006. Currently,
she is a research professor in Graduate School of Information

http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0050
https://www.f-secure.com/en/web/home_global/home
https://www.f-secure.com/en/web/home_global/home
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0060
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0060
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0060
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0060
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0060
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0065
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0065
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0065
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0065
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0065
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0070
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0070
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0070
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0070
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0075
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0075
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0075
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0075
http://www.addictivetips.com/mobile/what-is-odex-and-deodex-in-android-complete-guide/
http://www.addictivetips.com/mobile/what-is-odex-and-deodex-in-android-complete-guide/
http://www.addictivetips.com/mobile/what-is-odex-and-deodex-in-android-complete-guide/
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0085
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0085
http://dx.doi.org/10.1155/2015/379682
http://dx.doi.org/10.1155/2015/379682
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0090
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0090
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0090
http://www.mcafee.com/ca/resources/reports/rp-quarterly-threat-q3-2014.pdf
http://www.mcafee.com/ca/resources/reports/rp-quarterly-threat-q3-2014.pdf
http://www.mcafee.com/ca/resources/reports/rp-quarterly-threat-q3-2014.pdf
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0100
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0100
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0100
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0100
http://dx.doi.org/10.1007/978-3-319-08509-8_7
http://dx.doi.org/10.1007/978-3-319-08509-8_7
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0105
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0105
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0105
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0105
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0110
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0110
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0110
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0115
http://securityaffairs.co/wordpress/19041/malware/android-wroba-trojan-korea-banks.html
http://securityaffairs.co/wordpress/19041/malware/android-wroba-trojan-korea-banks.html
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0120
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0120
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0120
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0120
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0120
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0125
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0125
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0125
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0125
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0125
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0130
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0130
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0130
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0130
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0135
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0135
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0135
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0140
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0140
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0140
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0145
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0145
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0145
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0145
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0150
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0150
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0150
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0150
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0150
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0155
https://www.virustotal.com/en/
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0160
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0160
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0160
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0160
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0165
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0165
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0165
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0165
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0170
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0170
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0170
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0175
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0175
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0175
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0175
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0175
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0175
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0180
https://www.virusbtn.com/pdf/conference_slides/2014/Yu-VB2014.pdf
https://www.virusbtn.com/pdf/conference_slides/2014/Yu-VB2014.pdf
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0185
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0185
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0185
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0185
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0185
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0190
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0190
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0190
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0190
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0190
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0195
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0195
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0195
http://refhub.elsevier.com/S0167-4048(16)00002-X/sr0195
mailto:changkr@korea.ac.kr
mailto:janetk1004@gmail.com

138 COMPUTERS & SECURITY 58 (2016) 125-138

Security, Center for Information Security Technologies (CIST), in
Korea University. Her research interests include Social Media Ana-
lytics and Online Game Security. Contact her at jywoo@korea.ac.kr.

Aziz Mohaisen obtained his M.S. and Ph.D. degrees in Computer
Science from the University of Minnesota, both in 2012. He is cur-
rently an assistant professor at the Computer Science and
Engineering Department of the State University of New York at
Buffalo. From 2012 to 2015, he was a senior research scientist at
Verisign Labs. Before pursuing graduate studies at the University
of Minnesota, he was a member of Engineering Staff at the Elec-
tronics and Telecommunication Research Institute, a large research
and development institute in South Korea. His research interests

are in the areas of networked systems, systems security, data
privacy, and measurements. Dr. Mohaisen is a senior member of
Institute of Electrical and Electronics Engineers (IEEE) and
Association for Computing Machinery (ACM). Contact him at
mohaisen@buffalo.edu.

Huy Kang Kim received his Ph.D. in Industrial and Systems Engi-
neering from Korea Advanced Institute of Science and Technology
(KAIST) in 2009. Currently, he is an associate professor in Gradu-
ate School of Information Security, Center for Information Security
Technologies (CIST), in Korea University. His research interests
include Botnet Detection, Intrusion Detection System, Network Fo-
rensics and Online Game Security. Contact him at cenda@korea.ac.kr

mailto:jywoo@korea.ac.kr
mailto:mohaisen@buffalo.edu
mailto:cenda@korea.ac.kr

	 Andro-Dumpsys: Anti-malware system based on the similarity of malware creator and malware centric information
	 Introduction
	 Contribution
	 Organization

	 Related work
	 Sandboxing approach
	 Android permission monitoring
	 Framework API monitoring
	 Memory acquisition

	 Data exploration
	 Serial number of a certificate
	 On the uniqueness of serial numbers
	 Suspicious API sequence
	 Permission distribution
	 Intent
	 Usage of system commands
	 Existence of forged files

	 System overview
	 Overview
	 Footprints extraction process

	 The decision process
	 Detection engine
	 Classification engine

	 Performance evaluation
	 Implementation
	 Experimental setup
	 Experimental results and analysis
	 Effectiveness of malware detection
	 Effectiveness of malware classification
	 Effectiveness of detecting zero-day malware
	 Efficiency of malware classification

	 Limitation
	 Conclusion
	 Acknowledgments
	 References

