
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
AMAL: High-fidelity, behavior-based
automated malware analysis and classification
Aziz Mohaisen a,1, Omar Alrawi b, Manar Mohaisen c,*

a Verisign Labs, USA
b QCRI, Qatar Foundation, Qatar
c Korea Tech, Cheon-An, South Korea
a r t i c l e i n f o

Article history:

Received 15 December 2014

Received in revised form

31 March 2015

Accepted 1 April 2015

Available online xxx

Keywords:

Malware

Classification

Automatic analysis

Clustering

Machine learning

Dynamic analysis
* Corresponding author.
E-mail address: manar.subhi@koreatech.

1 The views and opinions expressed in this
Verisign, Inc.
http://dx.doi.org/10.1016/j.cose.2015.04.001
0167-4048/© 2015 Elsevier Ltd. All rights rese

Please cite this article in press as: Moha
classification, Computers & Security (201
a b s t r a c t

This paper introduces AMAL, an automated and behavior-based malware analysis and

labeling system that addresses shortcomings of the existing systems. AMAL consists of two

sub-systems, AutoMal and MaLabel. AutoMal provides tools to collect low granularity

behavioral artifacts that characterize malware usage of the file system, memory, network,

and registry, and does that by running malware samples in virtualized environments. On

the other hand, MaLabel uses those artifacts to create representative features, use them for

building classifiers trained by manually vetted training samples, and use those classifiers

to classify malware samples into families similar in behavior. AutoMal also enables un-

supervised learning, by implementing multiple clustering algorithms for samples grouping.

An evaluation of both AutoMal and MaLabel based on medium-scale (4000 samples) and

large-scale datasets (more than 115,000 samples)dcollected and analyzed by AutoMal over

13 monthsdshows AMAL's effectiveness in accurately characterizing, classifying, and

grouping malware samples. MaLabel achieves a precision of 99.5% and recall of 99.6% for

certain families' classification, and more than 98% of precision and recall for unsupervised

clustering. Several benchmarks, cost estimates and measurements highlight the merits of

AMAL.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Malware classification and clustering is an old problem that

many industrial and academic efforts have tackled. There are

two common and broad techniques used for malware detec-

tion, that are also utilized for classification: signature based

(Rieck et al., 2011; Tian et al., 2008; Kinable and Kostakis, 2011)

and behavior based (Park et al., 2010; Rieck et al., 2008; Zhao
ac.kr (M. Mohaisen).
paper are the views of th

rved.

isen A, et al., AMAL: Hig
5), http://dx.doi.org/10.1
et al., 2010; Perdisci et al., 2010; Strayer et al., 2008) tech-

niques. Signature based techniques use a common sequence

of bytes that appear in the binary code of a malware family to

detect and identify malware samples. On the one hand, while

signature-based techniques are very fast, since they do not

require running the sample to identify it, they are sometimes

inaccurate, can be thwarted using obfuscation, and require a

prior knowledge, including a set of known signatures associ-

ated with the tested families.
e author, and do not necessarily represent the policy or position of

h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

mailto:manar.subhi@koreatech.ac.kr
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 62
For example, antivirus companies use static signatures to

detect a known malware, which may completely miss a zero-

day malware that has not been seen before (Bilge and

Dumitras, 2012). Also malware has become more sophisti-

cated by using polymorphic obfuscation, packing, and code

rearranging to thwart antivirus signatures (Sharif et al., 2009).

Antivirus companies also use heuristic signatures to detect

and classify known malicious behavior. However, heuristics

often group families of malware together and give them

generic labels, which are not useful for most security and in-

telligence applications. Also, labels given by antivirus com-

panies to the same malware sample may vary by vendor.

There are many inconsistencies among the antivirus vendors

for different malware families (Bailey et al., 2007).

The behavior-based approach uses artifacts the malware

creates during execution. While this approach is more

expensive since it requires running the malware sample in

order to obtain artifacts and features for behavior character-

ization, it tends to have higher accuracy in characterizing

malware samples. Also, behavior characterization is agnostic

to the underlying code and can easily bypass code obfuscation

and polymorphism, relying on somewhat easier-to-interpret

features. Thus, this technique does not require the expertise

required for signature-based techniquesdthose techniques

require reverse-engineering skills to create signatures (Lee

et al., 2011; Slowinska et al., 2011).

Indeed, several studies used behavioral analysis for mal-

wareclassification.Thefirstworktodoso isbyBailyetal. (Bailey

et al., 2007), in which it is shown that high-level features of the

number of processes, files, registry records, and network

events, can be used for characterizing and classifying (multi-

class clustering) malware samples. However, the work can be

improved in various ways. First, the technique makes use of

only high-level features, and misses explicit low-level and im-

plicit features (left as a future work). Second, their work also

relies on a small number of samples for validation of the tech-

nique, and the only source for creating ground truth for those

sampleswas the side channel of antivirus labeling. Third, their

technique is limited to one clustering algorithm (hierarchical

clusteringwith the Jaccard index for similarity), and it is unclear

how other algorithms perform for the same task. Last, their

technique is intendedonly for clustering, anddoesnot consider

binary classificationproblems. Indeed, binary classificationhas

an appealing unique business opportunity to it.

More recently, Bayer et al. (Bayer et al., 2009) considered

improvingon the results in Bailey et al. (2007) in twoways. First,

they used the locality-sensitive hashing (LSH), a probabilistic

dimensionality reduction method, for memory-efficient clus-

tering. Second, instead of using high-level behavior charac-

teristics, the authors proposed to use low OS-level features

based on API-hooking for characterizing malware samples.

While the technique is demonstrated to be effective, it has

several shortcomings. First, malware samples scan for

installed drivers and uninstall or bypass the driver used for

kernel logging. More important, rootkits (like TDSS/TDL and

ZeroAccesseboth families are studied in our evaluation) are

usually installed in the kernel and the kernel logger can be

blind to all of their activities (Strackx and Piessens, 2012).

Finally, their work is tested on only one hierarchical clustering

algorithm, does not handle binary classification, and relies on a
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
set of small AV-labeled samples as a ground truthddespite

inconsistencies, per the same work (Bayer et al., 2009).

Rieck et al. (Rieck et al., 2008) used the same API-hooking

technique in Bayer et al. (2009) to collect artifacts and use

them for extracting features to characterizemalware samples.

However, in addition to the shortcomings shared with the

work in Bayer et al. (2009), their technique suffers from low

accuracy rates, perhaps due to their choice of features. While

they match the highest accuracy we achieve, our lowest ac-

curacy of classification of amalware family is 20% higher than

the lowest accuracy in their system. Their method is only

tested with one classifier, while we provide insight into

several other learning algorithms and how they succeed or fail

in classifying samples.

1.1. On the experimental comparison with the prior
literature

Our work is motivated by the work in Rieck et al. (2008), Bayer

et al. (2009), Bailey et al. (2007). It is worth noting that (Bailey

et al., 2007) does not provide any insight into accuracy, un-

like (Bayer et al., 2009), although different fromourwork in the

aspects stated earlier. An empirical comparison was consid-

ered with (Bayer et al., 2009) beyond timing measurements,

and we believe it is impossible to do with their feature-level

dataset because we need to generate the same set of fea-

tures used in our system from their binaries. Assuming

obtaining binaries is possible, there is no guarantee to obtain

the same behavior profiles by running those binaries, given

that the samples are five years old. Using their system for

analyzing our malware samples to generate comparable fea-

tures was not possible. Finally, a great part of our evaluation

requires highly accurate labels, which are naturally obtained

in our system and are not available for their samples.

1.2. An overview of AMAL

In this paper, we introduce AMAL, a large-scale behavior-

based solution for malware analysis and classification (both

binary classification and clustering) that addresses the

shortcomings of the previous solutions. To achieve its end

goal, AMAL consists of two sub-systems, AutoMal and MaLa-

bel. AutoMal builds on the prior literature in characterizing

malware samples by their memory, file system, registry, and

network behavior artifacts. Furthermore, MaLabel tries to

address the shortcomings and limitations of the prior work in

practical ways. For example, unlike (Bayer et al., 2009),

MaLabel uses low-granularity behavior artifacts that are even

capable of characterizing differences between variants of the

samemalware family. On the other hand, and given the wide-

range of functionalities of MaLabel, which includes binary

classification and clustering, it incorporates several tech-

niques with several parameters and automatically chooses

among the best of them to produce the best results.

1.2.1. Accuracy and labeling
To do that, and unlike the prior literature, MaLabel relies on

analyst-vetted and highly-accurate labels to train classifiers

and assist in labeling clusters grouped in unsupervised

learning. Finally, themalware analysis and artifacts collection
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6 3
part of AMAL (AutoMal) has been in production since early

2009, and it enabled us to collect tens of millions, analyze

several hundreds of thousands, and to manually label several

tens of thousands of malware samplesdthus collecting in-

house intelligence that goes beyond any related work in the

literature. Unlike labeling (for training and validation) in the

literature, which is subject to errors, analysts who are domain

experts did our labeling and human errors in their labeling are

negligible. In this study, we evaluate MaLabel on variety of

datasets obtained fromAutoMal and show the effectiveness of

AMAL in analyzing, characterizing, classifying, and labeling

malware samples.

1.2.2. On applications of binary classification
Both binary classification and clustering are operationally

important. Binary and supervised classification is expensive,

since it requires training amodel with solid ground-truth, and

using representative artifacts of the families (classes) of in-

terest, both of which are nontrivially obtained. However, the

cost of binary classification in our operational settings is

justified. The classification problem is interesting to us

because the volume of Malware we receive on daily basis is

larger than the capacity of our analysts. Classification enables

us to train a model on a small set of known malware and

extrapolate ourmodel to find new samples in large volumes of

malware we receive on daily basis. For the majority of our

customers, who consist of large financial institutes, the threat

of banking Trojans and specifically new and unidentified

variants of known families is of interest to them. We use this

classification system to identify malware variants of the same

family based on their behavior to inform our customers about

new malware threats pertaining to their interest. Another

benefit of this approach is that we are able to ignore or give

low priority to known insignificant malware families. For

example, by identifying FakeAV, a family that tricks the victim

into purchasing a fake antivirus product by alerting them to

fake infections on their system, we can use our classifier to

filter out all FakeAV samples from our malware feed to focus

on undiscovered threats that are relevant and interesting.

1.2.3. On applications of clustering
Clustering is interesting, as it always remains a challenging

and open-ended problem. Clustering allows us to group

samples of similar behavior together. For that, we manually

inspect the samples in each cluster, and augment the labels

we have of identifiedmalware over each cluster to identify the

majority in that cluster. Furthermore, we use memory signa-

tures, like YARA rules, to tag a specific signature of a family

based on its memory artifacts and then use that information

to label clusters. Finally in the rare cases of giving a cluster a

name when all other methods are exhausted we would use

majority voting of labels returned by a large number of anti-

virus scanners. The automatic labeling problem remains

partly unsolved, as it is the case in the literature (Bailey et al.,

2007), and we leave improving on that for future work.

1.3. Contributions

Our novel contributions in this work are methodical. While a

comparative study of various algorithms under various
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
settings should be done in any applied machine learning to

the security problem at hand, this was unfortunately not

done. Our system addresses many timely problems high-

lighted in the literature. Our novel contribution is not only the

reliance on multiple algorithms but highly accurate evalua-

tion, multiple fine-grained features for multiple families

characterization, the build of a system that extracts those

features, and demonstrating its efficiency at scale. Our system

for classification always matches accuracy of state-of-the-art

systems, and improves it in many settings (further details are

in Sections 3.1.1 and 3.1.2). Our clustering study shows the

relevance and efficiency of off-the-shelf techniques; the prior

work takes 138 min with LSH optimization to cluster 75 k

samples, while our system clusters 115 k samples in under 1 h

without optimization at the expense of additional memory

(Table 9). To sum up, our contribution is as follows:

� We introduce AMAL, a fully automated system for analysis,

classification, and clustering of malware samples. AMAL

consists of two subsystems, AutoMal and MaLabel. Auto-

Mal is a feature-rich and low granularity, behavior-based

artifact collecting system that runs malware samples in

virtualized environments and characterizes them by

reporting memory, file system, registry, and network

behavior. On the other hand, MaLabel uses artifacts

generated by AutoMal to create features and then use them

in classifying and clustering malware samples into fam-

ilies with similar characteristics. Both systems have been

in production and helped analyze and identify hundreds of

thousands of malware samples. AutoMal by design follows

several guidelines in Rossow et al. (2012) for safety, and

MaLabel follows several guidelines for data and algorithms

transparency, correctness, and realism.

� Based on an in-house product of AMAL, we use both me-

dium and large-scale datasets to show AMAL's effective-

ness by demonstrating more than 99% of precision and

recall in classification and more than 98% of precision and

recall in clustering malware. Our validation makes use of

several algorithms and settings and demonstrates the

practicality of our system at scale, even when using off-

the-shelf algorithms.
1.4. Organization

The organization of the rest of this paper is as follows. In

Section 2, we review the related literature. In Section 3 we

describe our system in details, including AutoMal, the auto-

matic malware analysis sub-system and MaLabel, the auto-

mated malware classification sub-system. In Section 4, we

evaluate our system. In Section 5 we outline some of the

future work and concluding remarks.
2. Related work

There has been plenty of work in the recent literature on the

use of machine learning algorithms for classifying malware

samples (Tian et al., 2009; Bailey et al., 2007; Rieck et al., 2011;

Park et al., 2010; Tian et al., 2008; Rieck et al., 2008; Kinable and
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 64
Kostakis, 2011; Ramilli and Bishop, 2010; Provos et al., 2007;

Binsalleeh et al., 2010). These works are classified into two

categories: signature based and behavior based techniques.

Our work belongs to the second category of these works,

where we used several behavior characteristics as features to

classify the Zeus malware sample. Related to our work is the

literature in Rieck et al. (2011, 2008); Park et al. (2010); Zhao

et al. (2010). In Park et al. (2010), the authors use behavior

graphs matching to identify and classify families of malware

samples, at high cost of graph operations and generation. In

Rieck et al. (2008, 2011), the authors follow a similar line of

thoughts for extracting features, and use SVM for classifying

samples, but fall short in relying on a single algorithm and

using AV-generated labels (despite their pitfalls).

To the best of our knowledge, the closest work in the

literature to ours is the work by Bailey et al. (2007). Similar to

our work, the authors’ goal is to use behavior characteristics

to cluster malware samples. However, our work is different in

three aspects. First, although we share similarity with their

high level grouping of features, our system makes use of low

granularity set of features, which expose richer behavior than

theirs. Second, we try several clustering and classification

algorithms, and demonstrate the performance-accuracy

tradeoff of using these algorithms, whereas their work is

limited to the hierarchical clustering with one distance mea-

sure. Finally, we use highly accurate analyst-vetted labels for

evaluation, where they use heuristics over AV-returned labels.

Our system utilizes memory features for characterizing

samples. Related to our use ofmemory features,Willems et al.

introduced CWXDetector (Willems et al., 2012) which detects

illegitimate code by analyzing memory sections that cause

memory faultsdartificially triggered bymarking those section

non-executable. The work can be integrated into our system,

although at cost: the mechanism is intrusive to other running

processes in the memory. Our current system, on the other

hand, does not require any memory modifications. Kolbitsch

et al. (2010) introduce Inspector, which is used for automati-

cally reverse engineering and highlighting codes responsible

for “interesting” behaviors by malware. Related to that, Sharif

et al. proposed to understand code-level behavior by reverse-

engineering code emulators (Sharif et al., 2009). Those are

examples among other works in the literature. However, all of

those works do not generate malware artifacts other than

memory-related signatures, which have limited insight into

characterizing generic malware samples.

Related to our use of network features is the line of

research on traffic analysis for malware and botnet detection,

reported in Jacob et al. (2011), Gorecki et al. (2011), Gu et al.

(2008a, 2008b, 2007) and for the particular families of mal-

ware that use fast flux, which is reported in Holz et al. (2008),

Nazario andHolz (2008). Related to our use of the DNS features

formalware analysis are theworks in Antonakakis et al. (2010,

2011), Bilge et al. (2011). None of those studies are concerned

by behavior-based analysis and classification of malware

beyond the use of remotely collected network features for

inferring malicious activities and intent. Thus, although they

share similarity with our work in purpose, they are different

from our work in the utilized techniques.

Broadly related to our work are systems for overcoming

malware evasion techniques. Improving on malware
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
detection, analysis and classification have been investigated

as well in several works in the literature. In Lanzi et al. (2009),

K-Tracer is introduced for extracting kernel malware behavior

and mitigating the circumvention of loggers deployed in the

kernel by rootkits. In Perdisci et al. (2008), MacBoost is used for

prioritizing malware samples by determining benign (or less

severe) from malicious piece of codes. A system to prevent

drive-by-malware based on behavior, named BLADE, is

introduced in Lu et al. (2010). Finally, a nicely written survey

on such systems and tools is in Egele et al. (Mar. 2008).

Finally, the use of machine learning techniques to auto-

mate classification of behavior of codes and traffic are heavily

studied in the literature. The reader can refer to recent surveys

in Sommer and Paxson (2010) and Rossow et al. (2012).
3. System design

The ultimate goal of AMAL is to automatically analyze mal-

ware samples and classify them into malware families based

on their behavior. To that end, AMAL consists of two compo-

nents, AutoMal and MaLabel. AutoMal is a behavior-based

automated malware analysis system that uses memory and

file system forensics, network activity logging, and registry

monitoring to profile malware samples. AutoMal also sum-

marizes such behavior into artifacts that are easy to interpret

and use to characterize and represent individual malware

samples at lower level of abstraction.

On the other hand, MaLabel uses the artifacts generated by

AutoMal to extract unified representation, in the form of

feature vectors, and builds a set of classifiers and clustering

mechanisms to group different samples based on their com-

mon and distinctive behavior characteristics. For binary

classification, AutoMal builds classifiers trained from highly

accurate, manually inspected, analyst-vetted and labeled

malware samples. MaLabel then uses the classifier to accu-

rately classify unlabeled samples into similar groups, and to

tell whether a given malware sample is of interest or not.

Finally, MaLabel also provides the capability of clustering

malware samples based on their behavior into multiple-

classes, using hierarchical clustering with several settings to

label such clusters. To perform highly accurate labeling,

MaLabel uses high-fidelity expert-vetted training labels

among othermethods.With those overall system design goals

and objectives, we now proceed to describe the system flow of

both AutoMal and MaLabel.

3.1. System flow

Given the different purposes of the two sub-systems used in

achieving our end goal, we build them as separate systems on

separate platforms. In the following, we elaborate on the flow

and functionalities of both sub-systems.

3.1.1. AutoMal: behavior-based malware analyzer
AutoMal is a system used by many customers, including large

financial institutions, AV vendors, and internal users (called

analysts). AutoMal is intended for a variety of users and

malware types, thus it supports processing prioritization,

multiple operating system and format selection, run time
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6 5
variables and environment adjustment, among other options.

The main features of AutoMal are as follows:

� Sample priority queue: Allows samples to have processing

priority based on submission source.

� Run time variable: Allows submitter to set run time for the

sample in the virtual machine (VM) environment.

� Environment adjustment: Allows submitter to adjust

operating system via script interface before running a

sample.

� Multiply formats: Allows submission of formats like, EXE,

DLL, PDF, DOC, XSL, PPT, HTML, and URL.

� VMware-based: Uses VMware as virtual environment.

� OS selection: Allows submitter to select operating system

for the VM, supportsWindows XP, 7, and Vistawith various

Service Packs (SP). Adding a new OS to AutoMal systems

requires very little effort.

� Lower Privilege: Allows submitter to lower the OS privilege

before running a sample. By default, samples run as a

privileged user in Windows XP.

� Reboot option: Allows submitter to reboot the system after

a sample is executed to expose other activities of malicious

code that might be dormant.

AutoMal is a malware analysis system that comprises of

several components, allowing it to scale horizontally for par-

allel processing ofmultiple samples at a time. An architectural

design and flow of AutoMal is shown in Fig. 1. AutoMal has 4

components, which are the sample submitter, controller,

workers (known as virtual machines, or VMs), and back-end

indexing and storage component (database).

Unique in our system (compared to the known literature) is

the variety of capabilities it provides to analysts, and the kind

of artifacts it collects for various use cases. For example, while

the four broad classes of artifacts are used in a way or another

in many systems e academic and commercial, AutoMal pro-

vides a compromise between two directions for individual

features: high-level (aggregate features) and low (OS)-level

features. AutoMal, in a way, generates artifacts used for low-

granularity features, that yet preserve the merits of high-
Fig. 1 e AutoMal flow diagram show multiple sources of

malware samples, a controller used for assigning samples

from the priority queue to virtual machines, and a back-

end storage system used by the controller to log in

behavior artifacts.

Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
level features; e.g., ease of interpretation. To this end, each

component is described in the following:

3.1.1.1. Samples submitter. The submitter is responsible for

feeding samples to AutoMal. The samples are selected based

on their priority in the processing queue. Given that AutoMal

has multiple sources of sample input including, customer

submissions, internal submissions, and AV vendor samples,

prioritization is used. Each of the samples are ranked with

different priority with customer submissions having the

highest priority followed by the internal submissions and

finally the AV vendor feeds. When the system is ideal, Auto-

Mal's controller fetches samples for processing from the pro-

cess queue, which has the highest priority.

3.1.1.2. Controller. The controller is the main component of

AutoMal and it is responsible for orchestrating the main pro-

cess of the system. The controller fetches highest priority

samples from the queue with the smallest submission time

(earliest submitted) and processes them. The processing be-

gins by the sample being copied into an available VM, applying

custom settings to the VM, if there are any, and running the

sample. The configuration for each VM is applied via a python

agent installed on each VM allowing the submitter to modify

the VM environment as they see fit. For example if an analyst

identifies that a malware sample is not running because it

checks a specific registry key for environment artifact to

detect the virtual environment, the analyst can submit a script

with the sample that will adjust the registry key so the mal-

ware sample fails to detect the virtual environment and pro-

ceed to infect the system. The agent also detects the type of

file being submitted and runs it correctly. For example, if a DLL

file is submitted, the agent will install the DLL as a Windows

Service and start the service to identify the behavior of the

sample. If a URL is submitted, the agent would launch Internet

Explorer browser and visit the URL. After the sample is run for

the allotted time, the controller pauses the VM and begins

artifact collection. The controller runs several tools to collect

the following artifacts:

� File system: files created, modified, and deleted, file con-

tent, and file meta data.

� Registry: registry created, modified, and deleted, registry

content, and registry meta data.

� Network: DNS resolution, outgoing and incoming content

and meta data.

� Volatile Memory: This artifact is only stored for one week

to run YARA signatures (Yara Project: A malwar, May 2013)

(details are below) on the memory to identify malware of

interest.

The file system, registry, and network artifacts and their

semantics are extracted from the VMware Disk (VMDK)

(VMWare, May 2013) and the packet capture (PCAP) file. The

artifacts and their semantics are then parsed and stored in the

back-end database in the corresponding tables for each arti-

fact. The PCAP files are also stored in the database for record

keeping. The VMwaremachine also saves a copy of the virtual

memory to disk when paused. The controller then runs our

own YARA signatures on the virtual memory file to match any
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 66
families that our analysts have identified, and tags them

accordingly. The virtual memory files are stored for 1 week on

the AutoMal then discarded due to the size of each memory

dump. For example, if the malware sample is run in a VM that

has 512 MB of RAM then the stored virtual memory file would

be 512 MB for that sample plus the aforementioned artifacts.

Storing virtual memory files indefinitely does not scale hence

we discard them after 1 week.

3.1.1.2.1. YARA signatures. YARA signatures are static

signatures used to identify and classify malware samples

based on a sequence of known bytes in a specific malware

family. Our analysts have developed several YARA signatures

based on their research and reverse engineering of malware

families. Developing these signatures is time consuming

because they require reverse engineering several malware

samples of a family and then identifying a specific byte

sequence that is common among all of them. A YARA signa-

ture is composed of 3 sections, meta section, string section,

and condition section. The meta section describes the signa-

ture and contains author information. The string section de-

fines the strings of interest and (or) a sequence of bytes.

Finally, the condition section is a logical statement used to

combine the different definitions in the string section to find a

target family. Fig. 2 shows an example of a typical YARA rule.

In our system we did not utilize memory signatures as a

feature for classification or clustering because not every

sample in our system has those artifacts available. We only

store thememory artifacts for oneweek; hencewe only have a

window of one week that covers a small set of malware pro-

cessed in AutoMal. If we identify a feature of importance in

memory we can modify our system to log those features for

future samples and we can add it to our feature set. We

currently utilize memory files and YARA signatures to classify

samples based on our analysts experience for malware fam-

ilies. We augment this information with our behavior-based

classification and clustering for automatic labeling.

3.1.1.3. Workers. The workers’ VMs are functionally inde-

pendent of the controller, which allows the system to add and

remove VMs without affecting the overall operation of the

system. The VMs consist of VMDK images that have different

versions of OSes with different patch levels. The current sys-

tem supports Windows XP, Vista, and 7 with various service

packs (SP). The VMs also have software such as Microsoft
Fig. 2 e An example of a YARA signature.

Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
Office, Adobe Reader, and a python agent used to copy and

configure the VM by the controller. The software installed on

the VMs varies based on OS version. For most samples re-

ported in this paper in Section 4, we used VMs with Windows

XP SP2 and with several software packages and programs

installed, including Microsoft Office 2007, Adobe Acrobat 9.3,

Java 6-21, FireFox 3.6, Internet Explorer 6, Python 2.5, 2.6, and

VMware Tools. For hardware configuration for the VMs see

Table 2 (all software packages are trademarks of their corre-

sponding producers). This choice of OS was necessitated by

the fact that customers report infections on that OS. However,

in case where samples are known to be associated with a

different OS version, the proper OS is chosen with similar

software packages.

3.1.1.4. Backend storage e database. The collected artifacts

are parsed into a MySQL database (MySQL, May 2013) by the

controller. The database contains several tables like files, reg-

istry, binaries, PCAP (packet captures), network, HTTP, DNS, and

memory_signature table. Each of the table contains meta data

about the collected artifacts with exception to PCAP and bi-

naries table. The binaries table stores files with meta data and

content where the files table stores meta information about

files created, modified, and deleted per sample run. The files

table contains parsed meta data from the binaries table. The

PCAP table is large in size, and stores the complete raw

network capture of the sample during execution which would

include any extra files downloaded by the sample. The HTTP,

DNS, and network tables store parsedmeta data from the PCAP

table for quick lookups.

3.1.2. MaLabel: automated labeling
MaLabel is a classification and clustering system that takes

behavior profiles containing artifacts generated by AutoMal,

extracts representative features from them, and builds clas-

sifiers and clustering algorithms for behavior-based group and

labeling of malware samples.

The novel contributions in MaLabel are highlighted in

Section 1.2. In particular, MaLabel provides capabilities for

comparative analysis of algorithms of applied machine

learning to malware classification and clustering. Those ca-

pabilities are clearly seen in its support to various algorithms

with various parameters and settings. The unique contribu-

tion of MaLabel cannot be separated from that of AutoMal: for

the guarantees of MaLabel, the artifacts generated by AutoMal

and the features extracted from them are a fundamental part.

Based on the class of algorithm to be used in MaLabel,

whether it is binary classification or clustering, the training (if

applicable) and testing data into MaLabel is determined by the

user (a flow of the process for classification is shown in Fig. 3).

If the data is to be classified, MaLabel trains a model using a

verified and labeled data subset and uses unlabeled data for

classification. MaLabel allows for choosing among several

classification algorithms, including support vector machines

(SVM)dwith a dozen of settings and optimization options,

decision trees, linear regression, and k-nearest-neighbor,

among others. MaLabel leaves the final decision of which al-

gorithm to choose to the user based on the classification ac-

curacy and cost (both run-time and memory consumption).

MaLabel also has the ability to tune algorithms by using
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

Fig. 3 e MaLabel's flow. Artifacts collected using AutoMal

are fed into MaLabel and used to extract features. Labels

are assigned using experts, as well as AV census, while

features selection is done for each algorithm to achieve

highest performance. Resulting labels from the learning

algorithm are used to train future runs of the algorithm on

newly fed testing data.

Table 1 e List of features. Unless otherwise specified, all
of the features are counts associated with the named
sample.

Class Features

File system Created, modified, deleted, file size

distribution, unique extensions, count of

files under selected and common paths.

Registry Created keys, modified keys, deleted keys,

count of keys with certain type.

Network

IP and port Unique destination IP, counts over certain

ports.

Connections TCP, UDP, RAW.

Request type POST, GET, HEAD.

Response type Response codes (200s through 500s).

Size Request and response distribution.

DNS MX, NS, A records, PTR, SOA, CNAME.

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6 7
feature and parameter selection (more details are in Section

4). Once the user selects the proper algorithm, MaLabel learns

the best set of parameters for that algorithm based on the

training set, and uses the trained model to output labels of

classes for the unlabeled data. Those labels serve as a final

result of MaLabel, although they can be used to re-train the

classifier for future runs.

Using the same features used for classification, MaLabel

uses unsupervised clustering algorithms to group malware

samples into clusters. MaLabel features a hierarchal clus-

tering algorithm, with several variations and settings for

clustering, cutting, and linkage (cf. x4). Those settings are

adjustable by the user. Unlike classification, the clustering

portion is unsupervised and does not require a training set to

cluster the samples into appropriate clusters. The testing

selector component will run hierarchal clusteringwith several

settings to present the user with preliminary cluster sizes and

number of clusters created using the different settings. Based

on the preliminary results the user can pick which setting fits

the dataset provided and can continue to the labeling and

verification process.

While the clustering feature in MaLabel is not intended for

labeling malware samples, but rather for grouping different

samples that are similar in their behavior, we provide the

system with the intelligence required for malware labeling.

After the clustering algorithm runs, we enable one of the

following options to label the data. First, using analyst-vetted

samples we augment the resulting clusters with labels and

extrapolate the labels on unlabeled samples falling with the

same clusters. Second, for those clusters that we do not have

significant analyst-vetted data, we make use of memory sig-

natures, where available, and further manual inspections.

Finally, while we try to avoid that as much as possible for the

known inconsistencies of their labeling systems, in cases

where none of the two options above are viable we use census

over labels of several antivirus scans for clusters’ member-

sdwe use 42 independent antivirus vendors; for further de-

tails see x4.
3.2. Features and their representation

While the artifacts generated by AutoMal provide a wealth of

features, in MaLabel we used only a total of 65 features for
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
classification and clustering. The features are broken down

based on the class of artifacts used for generating them into

three groupsda listing of the features is shown in Table 1:

3.2.1. File system features
File system features are derived from file system artifacts

created by the malware when run in the virtual environment.

We use counts for files created, deleted, andmodified.We also

use counts for files created in predefined paths like %APP-

DATA%, %TEMP%, %PROGRAMFILES%, and other common

locations. We keep a count for files created with unique ex-

tensions. For example if a malware sample creates 4 files on

the system, a batch file (.BAT), two executable files (.EXE), and

a configuration file (.CFG), we would count 3 for the number of

unique extensions. Finally, we use the file size of created files;

for that we do not use raw file size but create the distribution

of the files’ size.We divide the file size range, corresponding to

the difference between the size of the largest and smallest

files generated by a malware, into multiple ranges. We typi-

cally use four ranges, one for each quartile, and create counts

for files with size falling into each range or quartile.

3.2.2. Registry features
Theregistry featuresaresimilar to thefile featuressinceweuse

counts for registries created, modified, and deleted, registry

type like REG_SZ, REG_BIN, and REG_DWORD.While our initial

intention of using themwas exploratory, those features ended

up very useful in identifying malware samples, especially

when combined with other features (more details are in x4).

3.2.3. Network features
The network featuresmake up themajority of our 65 features.

The network features have 3 groups. The first group is raw

network features, which includes count of unique IP ad-

dresses, count of connections established for 18 different port

numbers, quartile count of request size, and type of protocol

(we limited our attention to three popular protocols, namely

the TCP, UDP, RAW). The second group is the HTTP features

which include counts for POST, GET, and HEAD request; the

distribution of the size of reply packets (using the quartile

distribution format explained earlier), and counts for HTTP

response codes, namely 200, 300, 400, and 500. The third
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 68
category includes DNS features like counts for A, PTR, CNAME,

and MX record lookups.

For the safety of potential victims of the malware samples

we run in AutoMal, we use several safety guidelines. First, we

block a list of wormable ports, including port 25, 587, 445, 139,

and 137 at the router level. We do this blocking although we

believe it will limit visibility to crucial features, although we

log the outgoing requests. We further add safety by limiting

the run time of samples, and throttling bandwidth, to avoid

sizable damage.

Although we do not utilize memory features in the evalu-

ation of MaLabel, the current in-production AutoMal collects

and archive memory artifacts. However, this functionality

was implemented in the system after many samples used in

this study were already analyzed and their artifacts are

archived. Thus, it is impossible to create memory features for

those samples without rerunning them in the system. How-

ever, since those samples are collected over a period of time,

even if we try to rerun them we will miss some other features

that are time-dependent. For example, a command and con-

trol server could be taken down since the last time the sample

was analyzed in AutoMal, thus rerunning the samples allows

us to get memory features but would make us loose the

network artifacts. As we are collecting memory signatures

that can be used to derive memory features for newly fed

samples, it is left for future work to systematically see how

those features will influence the clustering and classi-

ficationdpreliminary small-scale results are promising.

3.2.4. Features normalization
Following the related literature (Hong et al., 2012; Bayer et al.,

2009), we map the different features’ values in the range of

0 and 1, thus not biasing the feature selection process towards

any feature except of its true importance. Fortunately, all of

the features we use in MaLabel are normalizable.
Table 2 e Benchmarking of hardware components used
for the different parts of our system. MaLabel 1 and
MaLabel 2 are platforms used for clustering and
classification, respectively.*Win XP is default, and others
are used where needed.

Component AutoMal VM MaLabel 1 MaLabel 2

CPUs 1 1 1

RAM 256 MB 120 GB 192 GB

Hard drive 6 GB 200 GB 2 TB

OS Win XP* CentOS 6 CentOS 6
4. Evaluation

To evaluate the different algorithms in each application

group, we use several accuracy measures to highlight the

performance of various algorithms. Considering a class of

interest, S , the true positive (tp) for classification is defined as

all samples in S that are labeled correctly, while the true

negative (tn) is all samples that are correctly rejected. The false

positive (fp) is defined as all samples that are labeled in S while

they are not, whereas the false negative (fn) is all samples that

are rejected while they belong to S . For validating the per-

formance of the classifiers, we use the precision defined as

P ¼ tp/(tp þ fp), the recall as R ¼ tp/(tp þ fn), the accuracy as

A ¼ (tp þ tn)/(fp þ fn þ tp þ tn), and the F-score defined as

F ¼ 2(p � r)/(p þ r).

For clustering, we use the same definition of accuracy,

precision, and recall as in Bayer et al. (2009). In short, the

precision measures the ability of the clustering algorithm to

distinguish between different samples and associate them to

different clusters, whereas the recall measures how well the

clustering algorithm assigns samples of the same type to the

same cluster. To that end, given a reference (ground truth)

clustering setting T ¼ {Ti} for 0 < i � nt and a set of learned
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
clusters L ¼ {Li} for 0 < i � nl, the precision for the j-th learned

cluster is computed as Pj ¼ maxf��Lj ∩Ti

��g for 0 < i� nlwhile the

recall for the j-th reference cluster is computed as

Rj ¼ maxf��Li ∩Tj

��g for 0 < i� nl. The total precision and recall of

the algorithm are computed as 1
nt

Pnt
i¼1Pi and 1

nl

Pnl
i¼1Ri,

respectively.

4.1. Hardware and benchmarking

In Table 2,we disclose information about the hardwareused in

AMAL. While the hardware equipment used in running

MaLabel are not fully utilized (cf. x4.5.2), the hardware specifi-

cations used in AutoMal are important for its performance. For

example, memory signatures and file system scans heavily

depend on those specifications. For that, the parameters are

selected to be large enough to run the samples and the hosting

operating system, but not too large to make the analysis part

infeasiblewithin theallotted time for each sample.Notice that,

and as explained earlier, the operating systemused inAutoMal

can be adjusted in the initialization before running samples.

However, for consistency of results we use the same OS to

generate the artifacts for the different samples.

4.2. Datasets

The dataset used in this work is mainly from AutoMal, and as

explained earlier, is fed to the system by internal user and

external customers. Internal users are internal analysts of

malicious code, and external users of the system are cus-

tomers, who could be security analysts in corporates (e.g.,

banks, energy companies, etc.), or other antivirus companies

who are partners with us (they do not pay fees for our service,

but we mutually share samples and malware intelligence).

The main dataset used in this study consists of 115,157 mal-

ware samples. The time those samples were populated in the

system is shown in Fig. 4. The set of samples used in this study

is selected as a simple random sample from a larger popula-

tion of malware samples generated over that period of time.

4.2.1. Labeling for validation
A selected set of families to which those samples belong (with

their corresponding labels) are shown in Table 3. The dataset

particularly includes 2086 samples that are entirely inspected

and verified as Zeus or one of its variants by security analysts,

while other labels are either generated using the samemethod

(on a subset of the samples in the family) and the rest of the

label makes use of census over returned antivirus detections.

For that, we query a popular virus scanning service with 42
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

Fig. 4 e The time samples used in this study are populated

in AutoMaldSamples accumulated over 13 months. Notice

that the used samples are sampled from larger set of

samples accumulated over the same period of time.

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6 9
scan engines, and pass the MD5 of all samples in the larger

dataset to it. We use the detection provided by the scan to

create a census on the label of individual samples: if a sample

is detected and labeled by a majority of virus scanners of a

certain label, we use that label as the ground truth (those la-

bels are shown in Table 3). We note that the Zeus family re-

ported in Table 3 is manually inspected and labeled by

internal analysts, and results returned by the antivirus scan-

ners for the MD5s belonging to samples this family either

agree with this labeling, or assign generic labels to them, thus

establishing that one can rely on this census method for la-

beling and validation.

Note: In the process of conducting this study, we referred to

the recommendations in Rossow et al. (2012) for the trans-

parency, correctness, and realism of this work. For repro-

ducibility of results, we intend to release part the dataset used

in this study to the public domain.
4.3. High-fidelity malware classification

In this section, we focus on the binary classification problem

using the Zeus malware family (Falliere and Chien, November
Table 3 e Malware samples, and their corresponding labels, u

Size % Family

1077 0.94 Ramnit File in

system

1090 1.0 Bredolab Spam

1091 1.0 ZAccess Rootk

1205 1.1 Autorun Gener

1336 1.2 Spyeye Banki

1652 1.4 SillyFDC An au

down

2086 1.8 Zbot Banki

2422 2.1 TDSS Rootk

5460 4.7 Virut Polym

7691 6.7 Sality Additi

21,047 18.3 Fakealert Fake a

46,157 40.1 Subtotal

69,000 59.9 Others Small

115,157 100 Total

Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
2009), given its unique ground truth, where every sample in

this family is classified and labeled manually by analysts. We

then show the evaluation of different algorithms imple-

mented in MaLabel to classify other malware families using

the same set of features used in Zeus. Unless otherwise is

specified, in all evaluations we use 10-fold cross validationda

formal definition and settings are provided in Appendix B.

4.3.1. Classification of analyst-vetted samples
MaLabel implements several binary classification algorithms,

and is not restricted to a particular classifier. Examples of such

algorithms include the support vector machine (SVM), linear

regression (LR), classification trees, k-nearest-neighbor (KNN),

and the perceptron methoddall are formally defined along

with their parameters in Appendix A. We note that KNN is not

a binary classifier, so we modified it by providing it with

proper (odd) k, then voting is performed over which class a

sample belongs to. To understand how different classification

algorithms perform on the set of features and malware sam-

ples we had, we tested the classification of the malware

samples across multiple algorithms and provided several

recommendations. For the SVM, and LR, we used several pa-

rameters for regularization, loss, and kernel functions (defi-

nitions of those settings are in Appendix A).

For this experiment, we selected the same Zeus malware

dataset as one class, as we believe that the highly accurate

labeling provides high fidelity on the results of the machine

learning algorithms. For the second class we generated a

dataset with the same size as Zeus from the total population

that excludes ZBot in Table 3. Using 10-fold cross validation,

we trained the classifier on part of both datasets using the

whole of 65 features, and combined the remaining of each set

for testing. We ran the algorithms shown in Table 4 to label

the testing set. For the performance of the different algo-

rithms, we use the accuracy, precision, recall, and F-score.

The results are shown in Table 4. First of all, while all al-

gorithms perform fairly well on all measures of performance

by achieving a precision and recall above 85%, we notice that

SVM (with polynomial kernel for a degree of 2) performs best,

achieving more than 99% of precision and recall, followed by

decision trees, which is slightly lagged by SVM (with linear
sed in the classification training and testing.

Description

fector and a Trojan with purpose of stealing financial, personal, and

information

and malware distribution bot

it trojan for bitcoin mining, click fraud, and paid install.

ic detection of autorun functionality in malware.

ng trojan for stealing personal and financial information.

torun worm that spreads via portable devices and capable of

loading other malware.

ng trojan for stealing personal and financial information.

it trojan for monetizing resources of infected machines.

orphic file infector virus with trojan capability.

onal rootkit, trojan, and worm capability.

ntivirus malware with purpose to scam victims.

mal, <1 k samples each

h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

Table 4 e Results of binary classification using several
algorithms in terms of their accuracy, precision, recall,
and F-score. Time is computed as the average for 10-folds
(total time for labeling a fold of about 400 samples; in
milliseconds). A constant time of training is discarded.

Algorithm A P R F Time

SVM Poly. Kernal 99.22% 98.92% 99.53% 99.22% 1183.29

Classification Trees 99.13% 99.19% 99.06% 99.13% 20.63

SVM Linear Kernal 97.93% 98.53% 97.30% 97.92% 11.38

SVM Dual (L2R, L2L) 95.64% 96.35% 94.86% 95.60% 9.73

Log. Regression (L2R) 89.11% 92.71% 84.90% 88.63% 8.43

K-Nearest Neighbor 88.56% 93.29% 83.11% 87.90% 260.99

Log. Regression (L1R) 86.98% 84.81% 90.09% 87.37% 8.36

Perceptron 86.15% 84.93% 87.89% 86.39% 155.41

Table 5 e The accuracy measures versus the number of
features used for classification (SVM with L2R and L2L).

Features A P R F

3 65.3% 66.9% 60.5% 63.6%

6 73.2% 76.1% 67.6% 71.6%

9 89.6% 87.6% 92.3% 89.9%

15 94.1% 94.0% 94.1% 94.1%

25 94.4% 94.9% 93.9% 94.4%

35 94.6% 95.3% 93.8% 94.6%

45 94.9% 95.6% 94.0% 94.8%

65 95.6% 95.8% 95.3% 95.5%

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 610
kernel). Interestingly, and despite being simple and light-

weight, the logistic regression model achieves close to 90% on

all performance measures, providing competitive results.

While they provide less accuracy than the best performing

algorithms, we believe that all of those algorithms can be used

as a building block inMaLabel, which can ultimatelymake use

of all classifiers to achieve better results.

As for the cost of running the different algorithms, we

notice that the SVM with polynomial kernel is relatively slow,

while the decision trees require the most number of features

to achieve high accuracy (details are omitted). On the other

hand, while the dual SVM provides over 95% of performance

on all measures, it runs relatively quickly. For that, and to

demonstrate other aspects in our evaluation, we limit our

attention to the dual SVM, where possible. SVM is known for

its generalization and resistance to noise (Rieck et al., 2008).

Further details on how the different algorithms compare to

each other with respect to their running time are shown in

Table 4.

To understand causes for the relatively high false alarms

(causing part of the degradation in precision and recall) with

some of the algorithms we tried, we looked into mislabeled

Zeus and non-Zeus malware samples. We noticed that dis-

tance in the feature vector between misclassified samples is

far from themajority of other sampleswithin the class. This is

however understandable, given that a single class of malware

(Zeus and non-Zeus) includes within itself multiple sub-

classes that the high-level label would sometimes miss. This

observation is further highlighted in the clustering applica-

tion, where thosemislabeled samples are grouped in the same

group, representing their own sub-class of samples.

4.3.2. Features ranking and selection
While the number of features used in MaLabel is relatively

small when compared to other related systems (Antonakakis

et al., 2010, 2011), not all features are equally important for

distinguishing a certain malware family. Accordingly, this

number can be perhaps greatly reduced while not affecting

the accuracy of the classification algorithms. The reduction in

the number of samples can be a crucial factor in reducing the

cost of running the classification algorithm on large-scale

datasets.

In order to understand the relative importance of each

feature, with respect to the (linear) classification algorithms,
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
we ran the recursive feature elimination (RFE) algorithm

(Alpaydin, 2004), which ranks all features from the most

important to the least important feature. Given a set of

weights of features, the RFE selects the set of features to prune

recursively (from the least to the most important) until

reaching the optimal number of features to achieve the best

performance. In the linear classification algorithms, weights

used for ranking features are the coefficients in the prediction

model associated with each feature (variable).

Table 5 shows the performance measures for the SVM

using different numbers of features. We notice that, while the

best performance is achieved at the largest number of fea-

tures, indicating the importance of all features together, the

improvement in the performance is very small, particularly

for the SVM. The lowest 50 features in rank improve the ac-

curacy, precision, and recall by less than 2%. However, this

improvement is as high as 20%with decision trees (results not

shown and deferred to (Anonymized for Review, 2013) for the

lack of space). To this end, we confirm that a small set of

features can be used to achieve a high accuracy while main-

taining efficiency.

We also followed the recent literature (Hong et al., 2012;

Bilge et al., 2011, 2012) to rank the different features by their

high-level category. We ran our classifier on the file system,

memory (where available), registry, and network features

independently. For the network features, we further ranked

the connection type, IP and port, request/response type and

size, and DNS as sub-classes of features. From this measure-

ment, we found that while the file system features are the

most important for classificationdthey collectively achieve

more than 90% of precision and recall for classificationdthe

port features are the least important. It was not clear how

would the memory feature rank for the entire population of

samples, but using them where available, they provide

competitive and comparable results to the file system fea-

tures. Finally, the rest of the features were ranked as network

request/response and size, DNS features, then registry fea-

tures. All features and their rankings are deferred to

(Anonymized for Review, 2013).

4.3.3. Choosing classification parameters
Our system does not only feature several algorithms, but also

uses several parameters for the same algorithm. For example,

regularization and loss functions are widely used to improve

estimating unknown variables in linear classification. For

that, regularization imposes penalty for complexity and re-

duces over-fitting, while loss function penalizes incorrect
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

Table 7 e Binary classification of several malware
families.

Family A P R F

ZAccess 85.9% 80.7% 94.3% 87.0%

Ramnit 91.0% 87.1% 96.3% 91.5%

FakeAV 85.0% 82.5% 88.8% 85.6%

Autorun 87.9% 85.2% 91.8% 88.4%

TDSS 90.3% 89.6% 91.2% 90.4%

Bredolab 91.2% 88.0% 95.3% 91.5%

Virut 86.6% 85.9% 87.5% 86.7%

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6 11
classification. Widely used function types of parameters for

linear classification are the L1 and L2 functions (more details

on both types of functions are summarized in Appendix 1 and

discussed in details in Fan et al. (2008). In addition, since linear

classification or programming problems can be stated as pri-

mal problems, they can also converted to dual problems,

which try to solve the primal problem by providing an upper

bound on the optimal solution for the original (primal) prob-

lem. In the following we test how the choice of the proper set

of parametersdproblem representation into primal or dual

and the choice of regularization and loss functionsdaffects

classification by considering SVM and LR as two examples

with a select set of parameters. We use the same dataset as

above in this experiment as well.

The results of this measurement are shown in Table 6. We

observe that while all algorithm perform reasonably well on

all measures of performance (namely, above 90% for all

measures, for most of them), and can be used as a building

block for MaLabel, the L2-regularization L2-loss functions,

when combined with the dual optimization representation,

provides the highest performance with all accuracy measures

above 95%. All algorithms do not use kernel methods, and are

very fast to run even on large datasets.
4.4. Large scale classification

One limitation of the prior evaluation of the classification al-

gorithm is its choice of relatively small datasets that are equal

in proportion for training and testing, for both the family of

interest and the mixing family. This, however might not be

the case in operational contexts, where even a popular family

of malware can be as small as 1% of the total population as

shown in Table 3 for several examples. Accordingly, in the

following we test how the different classifiers are capable of

predicting the label of a given family when the testing set is

mixedwith a larger set of samples. For that, we use the labeled

samples as families of interest, while the rest of the popula-

tion of samples as the “other” family (they are collectively

indicated as one class). We run the experiment with the same

settings as before.We use 10-fold cross validation tominimize

bias. In the following we summarize the results of seven

families of interest. The results are shown in Table 7.

First of all, we notice that although the performance

measures are less than those reported for Zeus in Section

4.3.1, we were still able to achieve a performance nearing or
Table 6 e Selection of the support vector classifier with
the best performing parameters. A, P, R, and F correspond
to the accuracy, precision, recall, and F-score,
respectively.

Algorithm A P R F

L1-reg. log. regression (/) 93.7% 93.7% 93.7% 93.7%

L2-reg. log. regression (p) 92.3% 91.4% 93.4% 92.4%

L2-reg. L2-loss SVM (d) 95.6% 95.8% 95.3% 95.5%

L2-reg. L2-loss SVM (p) 89.1% 84.5% 95.7% 89.7%

L2-reg. L1-loss SVM (d) 94.1% 95.6% 92.5% 94.0%

L1-reg. L2-loss SVM (/) 94.0% 94.0% 94.0% 94.0%

L2-reg. log. regression (d) 94.3% 94.5% 94.1% 94.3%

Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
above 90% on all performance measures for some of the

malware families. For the worst case, those measure were as

low as 80%. While these measures are competitive compared

to the state-of-the-art results in the literature (e.g., the results

in Rieck et al. (2008) were as low as 60% for some families),

understanding the reasons behind false alarms is worth

investigation. To understand those reasons, we looked at the

samples marked as false alarms and concluded the following

reasons behind the degradation in the performance. First, we

noticed that many of the labels used for the evaluation that

resulted into the final result are not by analysts, but come

from the census over antivirus scansdeven though a census

on a large number of AV scans provides a good accuracy, it is

still imperfect. Second, we notice that the class of interest is

too small, compared to the total population of samples, and a

small error is amplified for that classdnotice that this effect is

unseen in Rieck et al. (2008) where classes are more balanced

in size (e.g., 1 to 9 ratios versus 1 to 99 ratio in our case).

Finally, part of the results is attributed to the relatively similar

context of the different families of malware samples, as

shown in Table 3, thus in the future we will explore enriching

the features to achieve higher accuracy.
4.5. Malware clustering

One of the limitations of the prior literature on malware

samples clustering is that it did not try different algorithms.

For example, while the hierarchical clustering has the same

overall procedure for producing clustering (details are in

Appendix 1), altering the cutting parameter, distance metric

or linkage criteria would greatly influence the shape of the

final cluster. For our application, this would mean different

resulting clusters for different parameters. MaLabel em-

ploys several distance metrics, like the Jaccard index, cosine

similarity, hamming distance, Euclidean distance, and cor-

relation. On the other hand, options for linkage include

average, complete (maximum), median, single (minimum),

ward, and centroid, among others. In this part, we evaluate

the clustering part of MaLabel, with different parameters

and settings, and report on some of the relevant results and

findings.

4.5.1. Clustering of manually labeled samples
Using the various options listed earlier, MaLabel gives the

choice to the user to pick the best clustering size based on the

user's data and, when available, the performance measures.

Multiple cut thresholds are calculated for each distance and
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 612
method to give an overview of how each clustering method

performed. The user then makes a judgment to choose the

most relevant results to fit the data to.

To evaluate the performance of the clustering, we use the

manually labeled Zeus family. We further use tags in the

manual labeling that divide the Zeus family intomultiple sub-

families (also called Zeus variations), and consider that as a

reference (or ground-truth) clustering. To add variety

of families to the problem, and challenging the clustering al-

gorithms, we also picked an equal number of samples, from

the families shown in Table 3. However, this time, we limit our

selection to samples for which we already know a correct

label. We ran our manually labeled malware dataset against

the clustering algorithms and evaluated the performance

using the precision and recall defined earlier.

Table 8 shows the precision, recall, and cutting threshold

for several distancemetrics. First of all, we notice that one can

achieve high performance using easy-to-set parameters.

While one can brute-force the cutting parameter range to

achieve the highest possible accuracy (Bayer et al., 2009), this

option might not be always available with partially labeled

data. Second, and most important, we notice that the ach-

ieved precision and recall outperform the classification algo-

rithms evaluated in Section 4.3. This in part is attributed to the

power of the clustering algorithm in distinguishing subclasses

into distinct clusters, whereas subclasses in the binary clas-

sification that are close to each other in the feature vector

space are grouped erroneously with each others. To this end,

one may actually use the results of the clustering to guide the

binary classification, and to reduce its false alarms, thus

improving its performance. We leave the realization of this

feature for future work.
Table 8 e Clustering precision and recall for several
linkage and cutting criteria and parameter values.

Linkage Cutting Precision Recall

Correlation Average 0.40 93.4% 100%

Centroid 0.25 96.2% 100%

Complete 0.70 89.7% 100%

Median 0.25 89.6% 96.6%

Single 0.40 90.2% 100%

Ward 0.25 93.5% 98.2%

Cosine Average 0.25 84.1% 100%

Centroid 0.25 84.6% 100%

Complete 0.40 85.5% 97.1%

Median 0.25 94.4% 95.2%

Single 0.40 91.2% 100%

Ward 0.25 94.2% 96.9%

Hamming Average 0.25 98.9% 97.6%

Centroid 0.25 98.5% 100%

Complete 0.25 98.7% 97.5%

Median 0.25 100% 100%

Single 0.25 98.3% 98.8%

Ward 0.25 99.3% 97.6%

Jaccard Average 0.25 99.9% 100%

Centroid 0.25 99.9% 100%

Complete 0.25 99.9% 100%

Median 0.40 99.9% 99.8%

Single 0.25 99.9% 100%

Ward 0.40 99.9% 100%

The metric that provides the best performance.

Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
4.5.2. Large scale clustering
We ran 115,157 samples of malware (the total of samples in

Table 3) through our clustering system to identify two main

aspects. First, we wanted to know how would those samples

of malware cluster among each other and how large would

each cluster be given that we have a very large sample set.

Second, we wanted to identify the time required for a large set

of samples to cluster and to identify the required hardware for

such process in operational settings. We tested the 115,157

sample on amachinewith 120 GB of RAM, four core processor,

and 200 GB hard diskdas shown in Table 2. We were able to

process 175,000 samples on the same machine in a very

reasonable time (details omitted for the lack of space).

4.5.2.1. Benchmarking and scalability. We benchmarked our

115,157 samples using several distance calculation algo-

rithms and hierarchal clustering methods with a cut off

threshold of 0.70. The timing results are shown in Table 9.

From this benchmarking, we observe the high variability of

time it takes for computing the distance matrix, which is

the shared time between all algorithms settings. For

example, computing the distance matrix using the Jaccard

index (which is the only distance measure used in the

literature for this purpose thus far (Bayer et al., 2009)) takes

5820 s (about 97 min) whereas all other distance measures

require between 27.8 min and 36.2 min. By considering other

evaluation criteria, like timing of the linkage cost and the

performance measures, one can make several interesting

conclusions. For example, given that the Hamming distance

and Jaccard index for distance computation perform equally

well for clustering, as shown in Table 8, one can use the

Hamming distance and save up to 70% of the total time

required for clustering the same dataset. Those results show

that it is highly visible to perform large-scale clustering,

even using off-the-shelf algorithms with settings that are

overlooked in the literature.

Finally, we measured the time it takes to extract 115,157

samples’ features from artifacts. We do that over network to

measure a distributed operation of our system. We found the

total time taken is 222 min (116 ms per sample), which is a

reasonable time that supports larger scales of deployment.

4.6. Limitations

Like many techniques that rely on machine learning for

classification and behavior for characterization, our technique

has several shortcomings and limitations. First of all, since we

run the malware samples in a virtualized environment, some
Table 9 e Timing (seconds) for a benchmark of 115,157
samples using different distance measures: Correlation
(Co), Ward (W), Single (S), Average (A), Median (M), and
Centroid (Ce). DM is the time for computing the pair-wise
distance matrix.

Method DM Co W S A M Ce

Correlation 1612 1436 1614 1396 1458 4954 5013

Cosine 1572 1429 1599 1390 1453 5323 5365

Hamming 2177 1460 1683 1412 1492 1453 1575

Jaccard 5820 1427 1686 1450 1449 1445 1604

h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6 13
of the malware samples may not run by detecting that fact, or

even run but generate irrelevant behavior profile. For samples

that do not run, which are mostly due to detecting that the

sample works in a virtualized analysis environment, or

because some environment variables are missing, we have

two options. First, we modify the VM environment using the

AutoMal configuration features to meet the expected envi-

ronment requirement for the sample to run. Second, if that

fails, we sometimes do manual debugging and reversing, and

occasionally run the sample on bare-metal (on a non-

virtualized system). An alternative to that is to use hardware

virtualization, as in Ether (Dinaburg et al., 2008).

Another theoretical limitation of our technique is that it

relies on behavior features that a malware sample can try to

evade by generating misleading artifacts to poison those fea-

tures. Indeed, adversarial machine learning has recently

received a lot of attention in studying strategies an adversary

can use to mislead the classifier (Biggio et al., 2012). However,

with our current dataset, we noticed that the features used for

classification and clustering are robust to minor changes

imposed by the adversary. Furthermore, once the adversary

becomes aware of the features used for classification and a

way to misguide our models, it becomes an open problem to

always update the features and select distinctive properties of

the malware sample that can resist such attacks. We

emphasize that this kind of attack pertains to theory, more

than to practice.
5. Conclusion and future work

In this paper we introduced AMAL, the first operational large-

scale malware analysis, classification, and clustering system.

AMAL is composed of two subsystems, AutoMal and MaLabel.

AutoMal runs malware samples in virtualized environments

and collects memory, file system, registry, and network arti-

facts, which are used for creating a rich set of features. Unlike

the prior literature, AutoMal combines signature-based tech-

niques with purely behavior-based techniques, thus gener-

ating highly representative features.

Using the artifacts generated by AutoMal, MaLabel creates

feature vectors and use them to 1) perform binary classifica-

tion of malware samples into distinctive, but generic families,

and 2) cluster malware samples into different families. Those

families can be at the granularity of a subclass (variant). By

evaluating AutoMal on a large corpus of analyst-vetted mal-

ware samples, we conclude itsmany features and advantages.

It provides high levels of precision, recall, and accuracy, for

both clustering and classification. Furthermore, it provides the

operator with the key feature of choosing among several

equally performing algorithms to do the same task (e.g.,

clustering) and at low cost.

Beside memory features that we did not examine system-

atically, we avoided the use of implicit features, side-channel

information on the reputation of network-related features

(e.g., IP reputation, and passive and reverse DNS information,

among others), and white- and blacklistsdmany of which are

already available for improving AMAL. In the future, we will

look at utilizing those as additional features to our system,

and study how they impact its performance.
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
Appendix A. Machine Learning Algorithms

We outline definitions of the machine algorithms used in

MaLabel. For optimizationswe used inMaLabel, see (Fan et al.,

2008) and (Anonymized for Review, 2013).
Appendix A.1Classification Algorithms

Appendix A.1.1Support Vector Machines (SVM)
Given a training set of labeled pairs (xi,yi) for 0 < i � [, xi2Rn,

and yi2f1;�1g, the (L2R primal) SVM solces:

min
w;b;x

1

2
wTwþ C

X[

i¼1

xi (A.1)

subject to yi

�
wTfðxiÞ þ b

� � 1� xi; (A.2)

xi � 0 (A.3)

where the training vectors xi are mapped into a higher

dimensional space using the function f, and the SVM finds a

linear separating hyperplane with the maximal margin in this

space. C > 0 is the penalty parameter of the error term (set to

0.01 in our work).

Kernel functions.Kðxi;xjÞ≡fðxiÞTfðxjÞ is the kernel function.

In MaLabel (x4) we use the linear and polynomial kernels,

defined as Kðxi;xjÞ ¼ xT
i xj and Kðxi;xjÞ ¼ ðgxT

i xj þ rÞd;g> 0,

respectively. In x4 we use g ¼ 64 and d ¼ 2.

Loss functions.x(w, x,yi) is called the loss function, where we

use the L1-loss and L2-loss, defined as

x
�
w;x; yi

� ¼ max
�
1� yiw

Txi;0
�
; and (A.4)

x
�
w;x; yi

� ¼ max
�
1� yiw

Txi;0
�2
: (A.5)

Regularization. The formalization in (A.1) is called the L2-

regularization. The L1-regularized L2-loss SVM solves the

following primal problem (where
����,����

1
is the L1-norm):

min
w

����w����
1
þ C

X[

i¼1

max
�
1� yiw

Txi;0
�2

(A.6)

Dual SVM. The dual SVM problem (Hsieh et al., 2008) is

defined as:

min
a

fðaÞ ¼ 1
2
aTQa� eTa (A.7)

subject to 0 � ai � U for 1 � i � [, where Q ¼ Q þ D, D is a

diagonal matrix, and Qij ¼ yiyjxT
i xj. For L1-Loss SVM, U ¼ C and

Dii ¼ 0 for 1 � i � [, while for L2-Loss SVM, U ¼∞ and Dii ¼ 1/2C

for 1 � i � [.

Appendix A.1.2Logistic Regression (LR)
Here we provide definitions for the logistic regression algo-

rithms used in x4. The L2-regularized primal LR solves the

following unconstrained optimization problem:

min
w

1
2
wTwþ C

X[

i¼1

log
�
1þ e�yiw

Txi

�
(A.8)

and the dual version of the problem (L2R LR dual) is
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 614
min
a

1
2
aTQaþ

X
i:ai >0

ai log ai þ
X
i:ai <C

ðC� aiÞ �
X[

i¼1

C log C (A.9)

subject to 0 � ai � C where 1 � i � [.

On the other hand, the L1 regularized LR solves

min
w

����w����
1
þ C

X[

i¼1

log
�
1þ e�yiw

Txi

�
: (A.10)

Appendix A.1.3Perceptron
The perceptron is an artificial neural network (ANN) that

maps its input x into a binary value (class label) as follows:

fðxÞ ¼
�
1 If w$xþ b>0
0 Otherwise

(A.11)

where w is a weights vector, and b is a bias parameter. We

defer detailed explanation of the learning and testing method

to our technical report for the lack of space (Anonymized for

Review, 2013). In x4, we use a maximum network depth of

100, a b of 0.05, and a learning rate a of 0.1. We do not concern

ourselves by finding the optimal parameters.
Appendix A.1.4K-Nearest-Neighbor
The KNN is a non-linear classification algorithm. In the

training phase, we provide the algorithm of two labels and a

set of training samples. In the testing phase, for each sample

vector a, we give it the label of the most frequent among the

training samples nearest to it. For the lack of space, we defer

details to (Anonymized for Review, 2013)dthe same tech-

nique is well explained in Alpaydin (2004). For evaluation, we

use an odd k (to break potential ties), and vote the class to

which a belongs.
Appendix A.1.5Decision Trees
For the lack of space, we defer most of the details on the

classification trees used in this study to (Anonymized for

Review, 2013) for the lack of space. However, we use the

standard classification tree described in Alpaydin (2004), and

using a single split tree (for two classes classification). For that,

we utilize all the set of features provided in the study (the

same technique with its optimizations is used in Bilge et al.

(2011)).
Appendix A.2Hierarchical Clustering

We use the classical hierarchical clustering algorithm in

Alpaydin (2004). We defer the description of the algorithm to

(Anonymized for Review, 2013), and here only focus on the

mathematical description of the different settings used in x4.
Appendix A.2.1Distance metrics
In x4, we use several distance metrics, defined as in

(A.12)e(A.15)

Jaccard : dða;bÞ ¼ a∨b
a∧b

(A.12)
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
Cosine : dða;bÞ ¼ a$b
jjajjjjbjj (A.13)

Hamming : dða;bÞ ¼
X
i

jai � bij (A.14)

Correlation : dða;bÞ ¼
1
n

P
i

aibi � mamb

sasb
(A.15)

In the definitions above, ma ¼ 1
jaj

P
a2a

a and mb ¼ 1
jbj

P
b2b

b.

Appendix A.2.2Linkage metrics
Let A and B be clusters, and a and b be arbitrary samples

(vectors) in them. We define the following linkage metrics.

Average : dðA;BÞ ¼ 1

jjAjjjjBjj
X
a2A

X
b2B

dða;bÞ (A.16)

Centroid : dðA;BÞ ¼ ����cA � cB
����
2
; cA ¼ 1

jAj
XjAj
i¼1

aki: (A.17)

Complete : dðA;BÞ ¼ max
a2A;b2B

dða;bÞ (A.18)

Median : dðA;BÞ ¼ jj ecA � ecB����2; ecA ¼ 1
2

�
c0A þ c00A

�
(A.19)

Single : dðA;BÞ ¼ min
a2A;b2B

dða;bÞ (A.20)

Ward : dðA;BÞ ¼ jAjjBj
jAj þ jBj

����cA � cB
����
2

(A.21)

In (A.17) and (A.19),
����,����

2
is the Euclidean distance defined

as dða;bÞ ¼ P
ci

ðai � biÞ2. In (A.19), ecB ¼ 1
2 ðc0B þ c00BÞ for recursively

linked clusters B' and B'' in B.
Appendix B. k-fold Cross Validation

We use the classical k-fold cross validation (where k ¼ 10) for

testing our models. We divide the dataset D into D1,D2,…,Dk.

We spare Di for 1� i� k for testing, and use the remaining k�1

folds for training. We repeat the process k times by altering

the testing and training datasets. As a sanity check, we rerun

the test several times by re-randomizing the order of samples

in D.
r e f e r e n c e s

Alpaydin E. Introduction to machine learning. MIT press; 2004.
Anonymized for Review. Amal: high-fidelity, behavior-based

automated malware analysis and classification. Technical
report, Anonymized for Review. 2013.

Antonakakis M, Perdisci R, Dagon D, Lee W, Feamster N. Building
a dynamic reputation system for dns. In: USENIX Security
Symposium; 2010.

Antonakakis M, Perdisci R, Lee W, II NV, Dagon D. Detecting
malware domains at the upper dns hierarchy. In: USENIX
Security Symposium; 2011.
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://refhub.elsevier.com/S0167-4048(15)00042-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref4
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref4
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref4
http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 6 15
Bailey M, Oberheide J, Andersen J, Mao Z, Jahanian F, Nazario J.
Automated classification and analysis of internet malware. In:
RAID; 2007.

Bayer U, Comparetti PM, Hlauschek C, Krügel C, Kirda E. Scalable,
behavior-based malware clustering. In: NDSS; 2009.

Biggio B, Nelson B, Laskov P. Poisoning attacks against support
vector machines. In: ICML; 2012.

Bilge L, Dumitras T. Before we knew it: an empirical study of zero-
day attacks in the real world. In: ACM CCS; 2012.

Bilge L, Kirda E, Kruegel C, Balduzzi M. Exposure: finding
malicious domains using passive dns analysis. In: NDSS; 2011.

Bilge L, Balzarotti D, RobertsonWK, Kirda E, Kruegel C. Disclosure:
detecting botnet command and control servers through large-
scale netflow analysis. In: ACSAC; 2012.

Binsalleeh H, Ormerod T, Boukhtouta A, Sinha P, Youssef A,
Debbabi M, et al. On the analysis of the zeus botnet crimeware
toolkit. In: Privacy security and trust; 2010.

Dinaburg A, Royal P, Sharif MI, Lee W. Ether: malware analysis via
hardware virtualization extensions. In: ACM CCS; 2008.

Egele M, Scholte T, Kirda E, Kruegel C. A survey on automated
dynamic malware-analysis techniques and tools. ACM
Comput Surv Mar. 2008;44(2):6:1e6:42.

Falliere N, Chien E. Zeus: King of the bots. Symantec Security
Response. November 2009., http://bit.ly/3VyFV1.

Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. Liblinear: a
library for large linear classification. J Mach Learn Res
2008;9:1871e4.

Gorecki C, Freiling FC, Kührer M, Holz T. Trumanbox: improving
dynamic malware analysis by emulating the internet. In: SSS;
2011.

Gu G, Porras P, Yegneswaran V, Fong M, Lee W. Bothunter:
detecting malware infection through ids-driven dialog
correlation. In: USENIX Security Symposium; 2007.

Gu G, Perdisci R, Zhang J, Lee W. Botminer: clustering analysis of
network traffic for protocol- and structure-independent
botnet detection. In: USENIX Security Symposium; 2008.

Gu G, Zhang J, Lee W. Botsniffer: detecting botnet command and
control channels in network traffic. In: NDSS; 2008.

Holz T, Gorecki C, Rieck K, Freiling FC. Measuring and detecting
fast-flux service networks. In: NDSS; 2008.

Hong C-Y, Yu F, Xie Y. Populated ip addresses: classification and
applications. In: ACM CCS; 2012. p. 329e40.

Hsieh C-J, Chang K-W, Lin C-J, Keerthi SS, Sundararajan S. A dual
coordinate descent method for large-scale linear svm. In:
ICML; 2008.

Jacob G, Hund R, Kruegel C, Holz T. Jackstraws: picking command
and control connections from bot traffic. In: USENIX Security
Symposium; 2011.

Kinable J, Kostakis O. Malware classification based on call graph
clustering. J Comput Virology 2011;7(4):233e45.

Kolbitsch C, Holz T, Kruegel C, Kirda E. Inspector gadget:
automated extraction of proprietary gadgets from malware
binaries. In: IEEE Sec. and Privacy; 2010.

Lanzi A, Sharif MI, Lee W. K-tracer: a system for extracting kernel
malware behavior. In: NDSS; 2009.

Lee J, Avgerinos T, Brumley D. Tie: principled reverse engineering
of types in binary programs. In: NDSS; 2011.

Lu L, Yegneswaran V, Porras P, Lee W. Blade: an attack-agnostic
approach for preventing drive-by malware infections. In: ACM
CCS; 2010. p. 440e50.

MySQL. http://www.mysql.com/, May 2013.
Nazario J, Holz T. As the net churns: fast-flux botnet observations.

In: MALWARE; 2008. p. 24e31.
Park Y, Reeves D, Mulukutla V, Sundaravel B. Fast malware

classification by automated behavioral graph matching. In:
CSIIR Workshop. ACM; 2010.
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
Perdisci R, Lanzi A, Lee W. Mcboost: boosting scalability in
malware collection and analysis using statistical classification
of executables. In: ACSAC; 2008.

Perdisci R, Lee W, Feamster N. Behavioral clustering of http-based
malware and signature generation using malicious network
traces. In: USENIX NSDI; 2010.

Provos Niels, McNamee Dean, Mavrommatis Panayiotis,
Wang Ke, Modadugu Nagendra. The ghost in the browser
analysis of web-based malware. In: USENIX HotBots; 2007.

Ramilli M, Bishop M. Multi-stage delivery of malware. In:
MALWARE; 2010.

Rieck K, Holz T, Willems C, Düssel P, Laskov P. Learning and
classification of malware behavior. In: Detection of intrusions
and malware, and vulnerability assessment; 2008. p. 108e25.

Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of
malware behavior using machine learning. J Comput Secur
2011;19(4):639e68.

Rossow C, Dietrich CJ, Grier C, Kreibich C, Paxson V, Pohlmann N,
et al. Prudent practices for designing malware experiments:
status quo and outlook. In: IEEE Sec. And Privacy; 2012.

Sharif MI, Lanzi A, Giffin JT, Lee W. Automatic reverse
engineering of malware emulators. In: IEEE Sec. and privacy;
2009.

Slowinska A, Stancescu T, Bos H. Howard: a dynamic excavator
for reverse engineering data structures. In: NDSS; 2011.

Sommer R, Paxson V. Outside the closed world: on using machine
learning for network intrusion detection. In: IEEE Symposium
on Security and Privacy; 2010.

Strackx R, Piessens F. Fides: selectively hardening software
application components against kernel-level or process-level
malware. In: ACM CCS; 2012.

Strayer WT, Lapsley DE, Walsh R, Livadas C. Botnet detection
based on network behavior. In: Botnet detection; 2008.

Tian R, Batten L, Versteeg S. Function length as a tool for malware
classification. In: IEEE MALWARE; 2008.

Tian R, Batten L, Islam R, Versteeg S. An automated classification
system based on the strings of trojan and virus families. In:
IEEE MALWARE; 2009.

VMWare. Virtual Machine Disk Format (VMDK). May 2013. http://
bit.ly/e1zJkZ.

Willems C, Freiling FC, Holz T. Using memory management to
detect and extract illegitimate code for malware analysis. In:
ACSAC; 2012.

Yara Project: a malware identification and classification tool. May
2013. http://bit.ly/3hbs3d.

Zhao H, Xu M, Zheng N, Yao J, Ho Q. Malicious executables
classification based on behavioral factor analysis. In: IC4E; 2010.

Aziz Mohaisen is a Senior Research Scientist at Verisign Labs. He
obtained his Ph.D. degree from the Computer Science Department
at the University of Minnesota e Twin Cities, in 2012. Before
starting graduate school at Minnesota in 2009, he spentmore than
five years in South Korea, where he worked as a member of en-
gineering staff (researcher) at ETRI, the largest government-
backed research institute with fundamental contributions to the
South Korean telecommunication revolution. Aziz is interested in
applied research in the areas of network security and privacy. His
current research projects are on intelligence-based security, in-
formation sharing and reputation, Internet measurements, and
emerging networking technologies. A common theme in his
recent research is the use of advanced machine learning tech-
niques to understand codes, traffic, and infrastructure perfor-
mance in real-world deployments. His work was featured in
popular media like the New Scientist, CBS news, Slashdot, MIT
technology review, and deepdotweb, among others. Aziz is a
member of ACM and IEEE.
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://refhub.elsevier.com/S0167-4048(15)00042-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref9
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref9
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref10
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref10
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref10
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref11
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref11
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref11
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref12
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref12
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref13
http://bit.ly/3VyFV1
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref19
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref19
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref25
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref25
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref25
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref26
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref26
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref27
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref27
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref28
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref28
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref28
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref28
http://www.mysql.com/
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref29
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref29
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref29
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref30
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref30
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref30
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref32
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref32
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref32
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref33
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref33
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref33
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref37
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref37
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref37
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref38
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref38
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref38
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref39
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref39
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref40
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref40
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref40
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref42
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref42
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref44
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref44
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref44
http://bit.ly/e1zJkZ
http://bit.ly/e1zJkZ
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref46
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref46
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref46
http://bit.ly/3hbs3d
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref48
http://refhub.elsevier.com/S0167-4048(15)00042-5/sref48
http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

c om p u t e r s & s e c u r i t y x x x (2 0 1 5) 1e1 616
Omar Alrawi is a senior software engineer at Qatar Computing
Research Institute, part of Qatar Foundation, in Qatar. He ob-
tained his B.Sc. and M.Sc. degrees both in computer science from
the computer science department at Purdue University. Before
joining QCRI, Omar was a security analyst at Verisign Inc and
Booz Allen Hamilton. Omar is interested in malware analysis
and the use of machine learning algorithms for security
automation.
Please cite this article in press as: Mohaisen A, et al., AMAL: Hig
classification, Computers & Security (2015), http://dx.doi.org/10.1
Manar Mohaisen received his M.S. degree in communications and
signal processing from the University of Nice-Sophia Antiplois,
France, in 2005 and Ph.D. from Inha University, Korea, in 2010,
both in communications engineering. From 2001 to 2004, he was
with the Palestinian Telecom. Co., where he was a cell planning
engineer. Since Sept. 2010, he is with the Department of EEC En-
gineering, KoreaTech, Korea, where he is an assistant professor.
His research interests include 3GPP LTE/-A systems, MIMO
detection and precoding and social networks.
h-fidelity, behavior-based automated malware analysis and
016/j.cose.2015.04.001

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2015.04.001

	AMAL: High-fidelity, behavior-based automated malware analysis and classification
	1. Introduction
	1.1. On the experimental comparison with the prior literature
	1.2. An overview of AMAL
	1.2.1. Accuracy and labeling
	1.2.2. On applications of binary classification
	1.2.3. On applications of clustering

	1.3. Contributions
	1.4. Organization

	2. Related work
	3. System design
	3.1. System flow
	3.1.1. AutoMal: behavior-based malware analyzer
	3.1.1.1. Samples submitter
	3.1.1.2. Controller
	3.1.1.2.1. YARA signatures

	3.1.1.3. Workers
	3.1.1.4. Backend storage – database

	3.1.2. MaLabel: automated labeling

	3.2. Features and their representation
	3.2.1. File system features
	3.2.2. Registry features
	3.2.3. Network features
	3.2.4. Features normalization

	4. Evaluation
	4.1. Hardware and benchmarking
	4.2. Datasets
	4.2.1. Labeling for validation

	4.3. High-fidelity malware classification
	4.3.1. Classification of analyst-vetted samples
	4.3.2. Features ranking and selection
	4.3.3. Choosing classification parameters

	4.4. Large scale classification
	4.5. Malware clustering
	4.5.1. Clustering of manually labeled samples
	4.5.2. Large scale clustering
	4.5.2.1. Benchmarking and scalability

	4.6. Limitations

	5. Conclusion and future work
	Appendix A. Machine Learning Algorithms
	Appendix A.1Classification Algorithms
	Appendix A.1.1Support Vector Machines (SVM)
	Appendix A.1.2Logistic Regression (LR)
	Appendix A.1.3Perceptron
	Appendix A.1.4K-Nearest-Neighbor
	Appendix A.1.5Decision Trees

	Appendix A.2Hierarchical Clustering
	Appendix A.2.1Distance metrics
	Appendix A.2.2Linkage metrics

	Appendix B. k-fold Cross Validation
	References

