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ABSTRACT

We investigate a new computing paradigm, called SocialCloud, in
which computing nodes are governed by social ties driven from a
bootstrapping trust-possessing social graph. We investigate how
this paradigm differs from existing computing paradigms, such as
grid computing and the conventional cloud computing paradigms.
We show that incentives to adopt this paradigm are intuitive and
natural, and security and trust guarantees provided by it are solid.
We propose metrics for measuring the utility and advantage of this
computing paradigm, and using real-world social graphs and struc-
tures of social traces; we investigate the potential of this paradigm
for ordinary users. We study several design options and trade-offs,
such as scheduling algorithms, centralization, and straggler han-
dling, and show how they affect the utility of the paradigm. Inter-
estingly, we conclude that whereas graphs known in the literature
for high trust properties do not serve distributed trusted comput-
ing algorithms, such as Sybil defenses—for their weak algorithmic
properties, such graphs are good candidates for our paradigm for
their self-load-balancing features.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General – Security

and Protection; C.4 [Performance of Systems]: Design studies

General Terms

Security, Design, Experimentation

Keywords

Distributed computing, Trust, Social Computing.

1. INTRODUCTION
Cloud computing is a paradigm that overcomes restrictions of

conventional computing systems by enabling elasticity and pay-as-
you-go, which free users from long-term commitments and obli-
gation towards providers. Cloud computing is beneficial for both
consumers and cloud service providers. Despite such benefits, this
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paradigm also poses several challenges, including the need for ar-
chitectures to support various potential applications, programming
models to address large scale data-centric computing, and the need
for strong security and data privacy protection guarantees. Indeed,
both outsider and insider threats to security and privacy of data in
cloud systems are unlimited. Also, there are many incentives for
providers to use of users’ data residing in cloud for their own ben-
efits, for the lack of regulations and enforcing policies.

In this paper, we oversee a new type of computing paradigm,
called SocialCloud, that enjoys parts of the merits provided by the
conventional cloud. Imagine the scenario of a computing paradigm
where users who collectively construct a pool of resources perform
computational tasks on behalf of their social acquaintance. Our
paradigm and model are similar in many aspects to the conventional
grid-computing paradigm. It exhibits such similarities in that users
can outsource their computational tasks to peers, complementarily
to using friends for storage, which is extensively studied in liter-
ature. Our paradigm is, however, very unique in many aspects as
well. Most importantly, our paradigm exploits the trust exhibited
in social networks as a guarantee for the good behavior of other
“workers” in the system. Accordingly, the most important ingre-
dient to our paradigm is the social bootstrapping graph, a graph
that is used for recruiting workers for SocialCloud. Most impor-
tant to the context of SocialCloud is the aggregate computational
power provided by users willing to share their idle time compute
cycles [3]. In SocialCloud, owners of these computing resources
are willing to share their computing resources for their friends, and
for a different economical model than in the conventional cloud
computing paradigm—fully altruistic one. This behavior makes
our work share commonalities with an existing stream of work on
creating computing services through volunteers [20, 5], although
by enabling trust. Our results hence highlight technical aspects of
this direction and pose challenges for designs options when using
social networks for recruiting such workers and enabling trust.

The contribution of this paper is twofold. First, we investigate
the potential of the social cloud computing paradigm by introduc-
ing a design that bootstraps from social graphs to construct dis-
tributing computing services. We advocate the merits of this paradigm
over existing ones such as the grid computing paradigm. Second,
we verify the potential of our paradigm using simulation set-up
and real-world social graphs with varying social characteristics that
reflect different, and possibly contradicting, trust models. Both
graphs and the simulator are made public to the community to make
use of them, and improve by additional features [14].
Organization. In §2 we review preliminaries followed by the de-
sign in §3. In §4, we describe our simulator followed in §5 by
preliminary results, analyses and discussion. In §6, we summarize
some of the related work followed by concluding remarks in §7.
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2. ASSUMPTIONS AND SETTINGS
In this section, we review the preliminaries required for under-

standing the rest of this paper. In particular, we elaborate on the
social networks, their popularity, and their potential for being used
as bootstrapping tools for systems, services, and protocols. We de-
scribe the social network formulation at a high level, the economi-
cal aspect of our system, and finally, the attacker model.
Social Graphs—High Level Description. We view the social net-
work as an undirected and unweighted graph G = (V,E), where
V = {v1, . . . , vn} is the set of vertexes, representing the set of
nodes in the social graph, and correspond to users (or computing
machines), and E = {eij} (where 1 ≤ i ≤ n and 1 ≤ j ≤ n)
is the set of edges connecting those vertices. |V | = n denotes the
size of G and |E| = m denotes the number of edges in G.
Economics of SocialCloud. In our design we assume an altru-
istic model, which simplifies the behavior of users and arguments
on the attacker model. In this model, users donate their comput-

ing resources while not using them. One can further improve this
model by incorporating a differential trust in scheduling [13]. In
this work, and in order to make use of and confirm this model, we
limit outsourced computations at 1-hop.
Use Model and Applications. For our paradigm, we envision
compute intensive applications for which other systems have been
developed in the past using different design principles, but lacking
trust features. These systems include ones with resources provided
by volunteers, as well as grid-like systems, like in Condor [11],
MOON [10], Nebula [5], and SETI@Home [1]. Specific examples
of applications built on top of these systems, that would as well
fit to our use model, include blog analysis [20], web crawling and
social apps (collaborative filtering, image processing, etc) [4], sci-
entific computing [19], among others.
Attacker Model. In this paper, as it is the case in many other sys-
tems built on top of social networks, we assume that the attacker is
restricted in many aspects. For example, the attacker has a limited
capability of creating arbitrarily many edges between himself and
other nodes in the social graph. For understanding the rationale of
this model, see the related literature; e.g., [13]
Comparison with Trust in Grid Computing Systems. While
there has been a lot of research on characterizing and improving
trust in the conventional grid computing paradigm [2]—which is
the closest paradigm to compare to ours, trust guarantees in such
paradigm are less strict than what is expressed by social trust. For
that, it is easy to see that some nodes in the grid computing paradigm
may act maliciously by, for example, giving wrong computations,
or refusing to collaborate; which is even easier to detect and toler-
ate, as opposed to acting maliciously.

3. THE DESIGN OF SOCIALCLOUD
The main design of SocialCloud is very simple, where complex-

ities are hidden in design choices and options. In SocialCloud, the
computing overlay is bootstrapped by the underlying social struc-
ture. Accordingly, nodes in the social graph act as workers to their
adjacent nodes (i.e., nodes which are one hop away from the out-
sourcer of computations). An illustration of this design is depicted
in Figure 1. In this design, nodes in the social graph, and those in
the SocialCloud overlay, use their neighbors to outsource computa-
tional tasks to them. For that purpose, they utilize local information
to decide on the way they schedule the amount of computations
they want each and every one of their neighbors to take care of.
Accordingly, each node has a scheduler which she uses for decid-
ing the proportion of tasks that a node wants to outsource to any
given worker among her neighbors. Once a task is outsourced to

the given worker, and assuming that both data and code for pro-
cessing the task are transferred to the worker, the worker is left to
decide how to schedule the task locally to compute it. Upon com-
pletion of a task, the worker sends back the computations result to
the outsourcer.

3.1 Design Options: Scheduling Entity
In SocialCloud two schedulers are used; one for determining

the proportion of task outsourced to each worker and the second
scheduler is used at each worker to determine how tasks outsourced
by outsourcers are computed and in which order. While the latter
scheduler can be easily implemented locally without impacting the
system complexity, the decision used for whether to centralize or
decentralize the former scheduler impacts the complexity and op-
eration of the entire system. In the following, we elaborate on both
design decisions, their characteristics, and compare them.
Decentralized Scheduler. In our paradigm, we limit selection of
workers to 1-hop from the outsourcer. This makes it possible, and
perhaps plausible, to incorporate scheduling of outsourcing tasks
at the side of the outsourcer in a decentralized manner—thus each
node takes care of scheduling its tasks. On the one hand, this could
reduce the complexity of the design by eliminating the scheduling
server in a centralized alternative. However, on the other hand, this
could increase the complexity of the used protocols and the cost
associated with them for exchanging states—such as availability of
resources, online and offline time, among others. All of such states
are exchanged between workers and outsourcers in our paradigm.
These states are essential for building basic primitives in any dis-
tributed computing system to improve efficiency (see below for fur-
ther details). An illustration of this design option is shown in Fig-
ure 1. In this scenario, each outsourcer and worker has its own
separate scheduler.

Worker 

Worker 

Worker 

Worker 

Worker 

Worker 

Worker 

Outsourcer 

Worker 

Scheduler Scheduler 

Figure 1: A depiction of the main SocialCloud paradigm as

viewed by an outsourcer of computations.

Centralized Scheduler. Despite that nodes may only require their
neighbors to perform the computational tasks on behalf of them and
that may require only local information—which could be available
to these nodes in advance, the use of a centralized scheduler might
be necessitated to reduce communication overhead at the protocol
level. For example, in order to decide upon the best set of nodes to
which to outsource computations, a node needs to know which of
its neighbors are available, among other statistics. For that purpose,
and given that the underlying communication network topology
may not necessarily have the same proximity of the social network
topology, the protocol among nodes needs to incur back and forth
communication cost. One possible solution to the problem is to
use a centralized server that maintains states of the different nodes.
Instead of communicating directly with neighbor nodes, an out-
sourcer would request the best set of candidates among its neigh-
bors to the centralized scheduling server. In response, the server
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Figure 2: Decentralized model of scheduling in SocialCloud.

Table 1: A comparison of design options

Option Failure Comm. Hardware Trust

Centralized ✖ O(n) ✖ ✖

Decentralized ✔ O(m) ✔ ✔

will produce a set of candidates, based on the locally stored states.
Such candidates would typically be those that would have the most
available resources to handle outsourced computation tasks.

An illustration is shown in Figure 2. In this design, each node in
SocialCloud would periodically send states to a centralized server.
When needed, an outsourcer node contacts the centralized server to
return to it the best set of candidates for outsourcing computations,
which the server would return based on the states of these candi-
dates. Notice that only states are returned to the outsourcer, upon
which the outsourcer would send tasks to these nodes on its own—
Thus, the server involvement is limited to the control protocol.

The communication overhead of this design option to transfer
states between a set of d nodes is 2d, where d messages are re-
quired to deliver all nodes’ states and d messages are required to
deliver states of all other nodes to each node in the set. On the other
hand, d(d − 1) messages are required in the decentralized option
(which requires pairwise communication of states update). When
outsourcing of computations is possible among all nodes in the
graph, this translates into O(n) for the centralized versus O(n2)
communication overhead for the decentralized option. To sum up,
Table 1 shows a comparison between both options.

3.2 Tasks Scheduling Policy
While using distributed or centralized scheduler resolves schedul-

ing at the outsourcer, two decisions remain untackled: how much
computation to outsource to each worker, and how much time a
worker should spend on a given task for a certain outsourcer. We
address these two issues separately.

Any off-the-shelf scheduling algorithm can be used to sched-
ule at outsourcer’s side, which can be further improved by incor-
porating trust models for weighted job scheduling [13]. On the
other hand, we consider several scheduling algorithms for workers
scheduling, as follows. (i) Round Robin (RR) Scheduling Policy
This is the simplest policy to implement, in which a worker spends
an equal share of time on each outsourced task in a round robin
fashion among all tasks he has. (ii) Shortest First (SF) Scheduling
Policy The worker performs shortest task first. (iii) Longest First
(LF) Scheduling Policy The worker performs longest task first.

Notice that we omit a lot of details about the underlying comput-
ing infrastructure, and abstract such infrastructure to “time sharing
machines”, which further simplifies much of the analysis in this

work. However, in a working version of this paradigm, all of these
aspects are addressed in a similar manner is in other distributed
systems and paradigms. See §5 for details on limitations of this
approach and possible extensions in the future work.

3.3 Handling Outliers
The main performance criterion used for evaluating SocialCloud is

the time required to finish computing tasks for all nodes with tasks
in the system. Accordingly, an outlier (also called a computing
straggler) is a node with computational tasks that take a long time
to finish, thus increasing the overall time to finish and decreasing
the performance of the overall system. Detecting outliers in our
system is simple: since the total time is given in advance, outliers
are nodes with computing tasks that have longer time to finish when
other nodes participating in the same outsourced computation are
idle. Our method for handling outliers is simple too: when an out-
lier is detected, we outsource the remaining part of computations
on all idle nodes neighboring the original outsourcer. For that, we
use the same scheduling policy used by the outsourcer when she
first outsourced this task. In the simulation part, we consider both
scenarios of handled and unhandled outliers, and observe how they
affect the performance of the system.

3.4 Deciding Workers Based on Resources
In real-world deployment of SocialCloud, we expect heterogene-

ity of resources, such as bandwidth, storage, and computing power,
in workers. This heterogeneity would result in different results
and utilization statistics of a system like SocialCloud, depending
on which nodes are used for what tasks. While our work does not
address this issue, and leaves it as a future work. We further believe
that simple decisions can be made in this regard so as to meet the
design goals and achieve the good performance. For example, we
expect that nodes would select workers among their social neigh-
bors that have resources and link capacities exceeding a threshold,
thus meeting an expected performance outcome.

4. SIMULATOR OF SOCIALCLOUD
To demonstrate the potential of SocialCloud as a computing paradigm,

we implement a batch-based simulator [16] that considers a variety
of scheduling algorithms, an outlier handling mechanism, job gen-
eration handling, and failure simulation. A flow diagram of the
simulator is in Figure 3.

The flow of the simulator is in Figure 3. First, a node factory
uses the bootstrapping social graph to create nodes and workers.
Each node then decides on whether she has a task or not, and if
she has a task she schedules the task according to her scheduling
algorithm. If needed, each node then transfers code on which com-
putations are to be performed to the worker along with the chunks
of the data for these codes to run on. Each worker then performs
the computation according to her scheduling algorithm and returns
results to the outsourcer.
Timing. In SocialCloud, we use virtual time to simulate compu-
tations and resources sharing. We scale down the simulated time
by 3 orders of magnitude of that in reality. This is, for every sec-
ond worth of computations in real-world, we use one millisecond
in the simulation environment. Thus, units of times in the rest of
this paper are in virtual seconds.

5. RESULTS AND ANALYSIS
In this section, and in order to derive insight on the potential of

SocialCloud, we experiment with the simulator described above.
Before getting into the details of the experiments, we describe the
data and evaluation metric used in this section.
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Figure 3: The flow diagram of SocialCloud.

5.1 Evaluation Metric
To demonstrate the potential of operating SocialCloud, we use

the “normalized finishing time” of a task outsourced by a user to
other nodes in the SocialCloud as the performance metric. For that,
we use the empirical commutative distribution function (CDF) as
an aggregate measure among all nodes with tasks to compute. For
a random variable X , the CDF is FX(x) = Pr(X ≤ x). In our
experiments, the CDF measures the fraction of nodes that finish
their tasks before time x, as part of the overall number of tasks. We
define x as the factors of time of normal operation per dedicated
machines, if they were to be used instead of outsourcing computa-
tions. This is, suppose that the overall time of a task is Ttot and the
time it takes to compute the subtask by the slowest worker is Tlast,
then x for that node is defined as Tlast/Ttot.

5.2 Tasks Generation
To demonestrate the operation of our simulator and the trade-off

our system provides, we consider two different approaches for the
tasks generated by each user. The size of each generated task is
measured by virtual units of time, and for our demonstration we
use two different scenarios. (i) Constant task weight. each out-
sourcer generates tasks with an equal size. These tasks are divided
into equal shares and distributed among different workers in the
computing system. The size of each task is T̄ . (ii) Variable task

weight. each outsourcer has a different task size. We model the
size of tasks as a uniformly distributed random variable in the range
of [T̄ − ℓ, T̄ + ℓ] for some T̄ > ℓ. Each worker receives an equal
share of the task from the outsourcer.

5.3 Deciding Tasks Outsourcers
Not all nodes in the system are likely to have tasks to outsource

for computation at the same time. Accordingly, we denote the frac-
tion of nodes that have tasks to compute by p, where 0 < p < 1.
In our experiments we use p from 0.1 to 0.5 with increments of
0.1. We further consider that each node in the network has a task
to compute with probability p, and has no task with probability
1 − p—thus, whether a node has a task to distribute among its
neighbors and compute or not follows a binomial distribution with
a parameter p. Once a node is determined to be among nodes with
tasks at the current round of run of the simulator, we fix the task
length. For tasks length, we use both scenarios mentioned in §5.2;
with fixed or constant and variable tasks weights.

5.4 Social Graphs
To derive insight on the potential of SocialCloud, we run our

simulator on several social graphs with different size and density,
as shown in Table 2. The graphs used in these experiments rep-
resent three co-authorship social structures (DBLP, Physics 1, and
Physics 2), one voting network (of Wiki-vote for wikipedia admin-
istrators election), and one friendship network (of the consumer re-
view website, Epinion). Notice the varying density of these graphs,
which also reflects on varying topological characteristics. Also, no-

Table 2: Social graphs used in our experiments.

Dataset # nodes # edges Description

DBLP 614981 1155148 CS Co-authorship
Epinion 75877 405739 Friendship network
Physics 2 11204 117649 Co-authorship
Wiki-vote 7066 100736 Voting network
Physics 1 4158 13428 Co-authorship

tice the nature of these social graphs, where they are built in differ-
ent social contexts and possess varying qualities of trust that fits to
the application scenario mentioned earlier. The proposed architec-
tural design of SocialClould, however, minimally depends on these
graphs, and other networks can brought instead of them. As these
graphs are widely used for verifying other applications on social
networks, we believe they enjoy a set of representative characteris-
tics to other networks as well.

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
D

F

Time (normalized)

Physics 1
Physics 2

Epinion
Wiki-vote

DBLP

(a) Handled outliers

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
D

F

Time (normalized)

Physics 1
Physics 2

Epinion
Wiki-vote

DBLP

(b) Unhandled outliers

Figure 5: The performance of SocialCloud on the different so-

cial graphs. Both figures use p = 0.3 and the RRS.

5.5 Main Results
Number of Outsourcers. In the first experiment, we run our So-
cialCloud simulator on the different social graphs discussed ear-
lier to measure the evaluation metric when the number of the out-
sourcers of tasks increases. We consider p = 0.1 to 0.5 with in-
crements of 0.1 at each time. The results of this experiment are in
Figure 4. On the results of this experiment we make several obser-
vations. First, we observe the potential of SocialCloud, even when
the number of outsourcers of computations in the social network is
as high as 50% of the total number of nodes, which translates into a
small normalized time to finish even in the worst performing social
graphs (about 60% of all nodes with tasks would finish in 2 nor-
malized time units). However, this advantage varies for different
graphs: we observe that sparse graphs, like co-authorship graphs,
generally outperform other graphs used in the experiments (by ob-
serving the tendency in the performance in figures 4(a) through 4(b)
versus figures 4(c) and 4(d)). In the aforementioned graphs, for
example, we see that when 10% of nodes in each case is used,
and by fixing x, the normalized time, to 1, the difference of per-
formance is about 30%. This difference of performance can be
observed by comparing the Physics co-authorship graphs—where
95% of nodes finish their computations—and the Epinion graph—
where only about 65% of nodes finish their computations.

Second, we observe that the impact of p, the fraction of nodes
with tasks in the system, would depend greatly on the underlying
graph rather than p alone. For example, in Figure 4(a), we observe
that moving from p = 0.1 to p = 0.5 (when x = 1) leads to a de-
crease in the fraction of nodes that finish their computations from
95% to about 75%. On the other hand, for the same settings, this
would lead to a decrease from about 80% to 40%, a decrease from
about 65% to 30%, and a decrease from 70% to 30% in DBLP,
Epinion, and Wiki-vote, respectively. This suggests that the de-
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Figure 4: The normalized time it takes to perform outsourced computations in SocialCloud.
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Figure 6: The normalized time it takes to perform outsourced computations in SocialCloud for different scheduling policies; U and

stand for unhandled and handled (balanced) outlier. RRS, SFS, and LFS are the scheduling policies.

creases in the performance are due to an inherit property of each
graph. The inherit property of each graph and how it affects the
performance of SocialCloud is further illustrated in Figure 5. We
find that even when DBLP’s size is two orders of magnitude the
size of Wiki-vote, it outperforms Wiki-vote when not using outlier
handling, and gives almost the same performance when using it.

Scheduling Policy. To understand the impact of policies on the
performance, we use p = 0.1 to 0.5 with 0.2 increments (partly
shown in Figure 6). The observed consistent pattern in all figures
in this experiment tells that shortest first policy always outperforms
the round robin policy, whereas the round robin policy outperforms
the longest first. This pattern is consistent regardless of p and the
outlier handling policy. The difference in the performance when us-
ing different policies can be as low as 2% (when p = 0.1 in physics
co-authorship; shown in Figure 6(f)) and as high as 70% (when us-
ing p = 0.5 and outlier handling as in wiki-vote; not shown for
the lack of space). The patterns are made clearer in Figure 6 by
observing combinations of parameters and policies.

Performance with Outliers Handling. Outliers drag the perfor-
mance of the entire system down. However, handling outliers is
quite simple in SocialCloud if accurate timing is used. Here we
consider the impact of the outlier handling policy in §3.3. In this
figure 6, we see that the simple handling policy we proposed im-
proves the performance of the system greatly in all cases. The im-
provement differs depending on other parameters, such as p, and
the scheduling policy. As with the scheduling policy, the improve-
ment can be as low as 2% and as high as more than 60%. When p
is large, the potential for improvement is high—see, for example,
p = 5 in Physics 2 with the round robin scheduling policy where
almost 65% improvement is due to outlier handling when x = 1.

Variable Task Size. In all experiments so far, we considered tasks
of fixed size; 1000 of virtual time units in each of them. Whether
the same pattern would be observed in tasks with variable size is
unclear. Here we experimentally address this concern by using

variable duty size that is uniformly distributed in the interval of
[500, 1500] time units. The results are shown in Figure 7. Compar-
ing these results to the middle row of Figure 6 (for the fixed size
tasks), we make two observations. (i) While the average task size
in both scenarios is same, we observe that the performance with
variable task size is worse. This performance is anticipated as our
measure of performance is the time to finish that would be defi-
nitely increased as some tasks with longer time to finish are added.
(ii) The same patterns advantaging a given scheduling policy on
another are maintained as in earlier with fixed task length.

Structure and Performance. We note that the performance of
SocialCloud is quite related to the underlying structure of the social
graph. We see that sparse graphs, like co-authorship graphs, have a
performance advantage in SocialCloud. These graphs are shown to
possess a nice trust value that can be further utilized in SocialCloud.
Furthermore, this trust value is unfound in online social networks
which are prone to infiltration, making the case for trust-possessing
graphs even stronger, as they achieve performance guarantees as
well. This, indeed, is an interesting finding by itself, since it shows
contradicting outcomes to what is known in the literature on the
usefulness of these graphs—see §2 for more details and the work
in [13] for prior literature that agrees with our findings.

5.6 Additional Features and Limitations
Our simulator of SocialCloud omits a few details concerning the

way a distributed system behaves. For example our measurements
do not consider failure. Furthermore, our simulator considers a
simplistic scenario by abstracting the hardware, and does not con-
sider additional resources consumed, such as memory and I/O re-
sources. We also do not consider the heterogeneity of resources,
such as bandwidth and memory. Last, we did not consider how this
affects the usability of our system and what decision choices this
particular aspect of distributed computing systems would have on
the utility of our paradigm. While this work would be pursued in
the future, we expect that nodes would select workers among their
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Figure 7: The normalized time to perform outsourced computations in SocialCloud, for variable task size.

social neighbors that have resources and link capacities exceeding
a threshold, thus meeting an expected performance outcome.

6. RELATED WORK
Systems built on top of social networks include file sharing [8,

13], anonymous communication [18], Sybil defenses [21, 12, 15],
routing [7], and content distribution [22], among many others. Most
of these systems use social networks’ trust and connectivity for
their operation. Concurrent to our work, and following their work
in [6], Chard et al. suggested the use of social networks to build a
resource sharing system. Whereas their main realization was still
a social storage system as in [6], they also suggested that the same
vision can be used to build a distributed computing service as we
advocate in this work. Recent realizations of this vision have been
reported in [17] and [9]. In [17], Thaufeeg et al. devised an ar-
chitecture where “individuals or institutions contribute the capacity
of their computing resources by means of virtual machines leased
through the social network”.

In [9] Koshy et al. further explored the motivations of users to
enable social cloud systems for scientific computing. With simi-
lar flavor of distributed computing services design, there has been
prior works in literature on using volunteers’ resources for compu-
tations exploiting locality of data [5, 20], examination of program-
ing paradigms on such system [10]. Finally, our work shares sev-
eral commonalities with grid and volunteer computing systems [11,
10, 5, 20, 1], of which many aspects are explored in the literature.
Trust of grid computing and volunteer-based systems is explored
in [2]. Applications built on top of these systems, that would fit to
our use model, are reported in [20], among others.

7. SUMMARY AND FUTURE WORK
In this paper we have introduced the design of SocialCloud, a

distributed computing service that recruits computing workers from
friends in social networks and use such social networks that char-
acterize trust relationships to bootstrap a computing service. To
demonstrate the potential of our design, we used several social
graphs to show that the majority of nodes in most graphs would
benefit from outsourcing their computations to such service. We
considered several basic distributed system characteristics and fea-
tures, such as outlier handling, scheduling decisions, and scheduler
design, and show advantages in each of these features and options
when used in our system.

In the future we aim to complete the missing features of the simu-
lator and enrich it by further scenarios of deployment of our design,
under failure, with different scheduling algorithms at both sides of
the outsourcer and workers. We will consider other overhead char-
acteristics that might not be in line with topological characteristics
in the social graph. These characteristics may include the uptime,
downtime, communication overhead, and I/O overhead consump-
tion. Second, we will implement a proof-of-concept application by
utilizing design options discussed in this paper. We anticipate hid-
den complexities in the design to arise, and significant findings to
come out of the deployment.
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