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ABSTRACT

In recently proposed information centric networks (ICN), a user is-
sues “interest” packets to retrieve contents from network by names.
Once fetched from origin servers, “data” packets are replicated and
cached in all routers along routing and forwarding paths, thus al-
lowing further interests by other users to be fulfilled quickly. How-
ever, the way ICN caching works poses a great privacy risk: the
time difference between responses for an interest of cached and un-
cached content can be used as an indicator to infer whether or not a
near-by user has previously requested the same content as that re-
quested by an adversary. This work introduces the extent to which
the problem is applicable in ICN and provides several solutions that
try to strike a balance between their cost and benefits, and raise the
bar for the adversary to apply such attack.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General – Security

and Protection; C.4 [Performance of Systems]: Design studies
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1. INTRODUCTION
Information centric networks (ICNs) have been proposed as new

Internet architectures towards secure and efficient content dissemi-
nation. In several ICNs such as content centric network (CCN) [11]
and named data network (NDN) [19], contents are fetched by their
names from caches deployed in the network or from origin servers—
servers that serve the contents if they are not cached in the network.
In such ICN architectures, once a content data packet is fetched
from an origin server, it is replicated and cached in all routers along
the routing and forwarding path—starting from the router that con-
nects user who issues the interest to the one that connects the origin
server to the ICN—thus allowing further interests with the same
content name to be fulfilled quickly [11]. For example, when an-
other user issues an interest in these contents that have been pre-
viously served to a user on the same path, the interest is fulfilled
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Figure 1: Toy example of timing attack in ICN.

from the near-by cache. This design choice—as advocated by many
ICN designs and architectures—is considered a great advantages in
reducing overall content retrieval latency [11, 19]. However, this
universal caching mechanism poses a great privacy risk: the time
difference between a response of cached, when compared to un-
cached content, can be used as a side channel to infer whether a
near-by user has previously requested that content.

For example, consider the topology in Figure 1, which depicts
users U1 and U2, and a set of routers r0 to r2 (each with its own
cache) connecting both users to an origin server that holds con-
tent with name n. Suppose that user U2 is the adversary, whereas
user U1 is honest. If U1 issues an interest in content n that re-
sides behind r0, the interest traverses the path U1 → AP1 →
r2 → r1 → r0, from which it retrieves a requested packet of
the content. The packet is then sent back over the returning path
r0 → r1 → r2 → AP1 → U1. In total, the path from U1 to the
source of the content and the returning path to U1 have four-hop
each. The total round trip time required for sending the request un-
til starting to receive data packets on the returning path is t1. On
the other hand, if U2 is to request the same content by its name, n,
the path that the interest would traverse is U2 → AP2 → r2, and
the contents would return on the reversed path (r2 → AP2 → U2),
which is two-hop in each direction, and would require a time t2.
Obviously, the time t1 is greater than t2, which an adversary U2

can use to infer that user U1 has accessed the content n.
Although pinpointing U1 precisely may require additional side

information, an attack like the one described above is still critical
since it reduces the anonymity set of that user greatly. Such sce-
nario is equal in value to identifying individual users when com-
bined with easily available information. For example, an adver-
sary launching a business intelligence attack might be interested in
knowing what contents are being retrieved by a competing com-
pany, rather than by individual users. This attack would be possi-
ble if the adversary is co-located with that company behind an edge
router, and using the above technique.
Shortcomings of Simple Solutions. Simple solutions cannot pre-
vent the attack. For example, a user can mark a content object with
a privacy flag to disable in-network caching. However, this will
degrade the quality of experience of other users. Also, an adver-
sary can send two consecutive requests of the same name to infer
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routers’ behavior. In the first request, and assuming caching is en-
abled, the requested data will result in data caching The second
request in that case will result in cache-hit, and the content will be
served to the adversary quickly. However, if caching is disabled,
the second request will result in a delay close to the delay in the
first request, from which the adversary can infer that caching is dis-
abled, and that another user has likely used the privacy flag.

Other solutions to the attack by “intelligent caching” based on
router-to-user distance have their limitations. To do that, a router
has to either know the user’s location in advance or have the lo-
cation provided at the time of caching. While the first approach
requires partial topology information that can easily exceed typ-
ical routers’ resources, the latter one is vulnerable to misuse; to
negatively impact the users’ experience the adversary can flag any
content from an arbitrary location so as to disable caching.

1.1 Contributions
We make the following contributions:

• we demonstrate timing attacks on the universal caching mech-
anism proposed in ICN designs like CCN and NDN. For that,
we make use of fine-grain per-hop timing measurements of
cached and uncached contents using real-world time mea-
surements with CCNx, a prototype implementation of the
CCN [2]. We disclaim the originality of the attack in its gen-
eral form but claim its suitability and applicability to ICN.

• we propose three protocols, each with different levels of com-
plexity, cost, and privacy guarantees that prevent an adver-
sary co-located with benign users to infer whether they have
accessed certain contents or not by relying on the timing.
Each and every of these protocols tries to strike a balance be-
tween the privacy provided to legitimate users from potential
adversary, and the overhead added for requests performed by
other legitimate users to the privacy-related contents.

1.2 Organization
The organization of the rest of this paper is as follows. In Sec-

tion 2 we review the preliminaries and terminologies used in this
paper. In Section 3 we introduce three protocols to solve the prob-
lem and maintain the privacy of users access, where each protocol
comes at different cost and privacy guarantees. In Section 4 we
present our simulation results to validate the attack and evaluate
the performance of our defense protocols. In Section 5 we high-
light several discussion points, including potential attacks and their
applicability to our protocols. Section 6 reviews related work and
Section 7 concludes this work and point out our future work.

2. PRELIMINARIES AND TERMINOLOGY
In ICN, contents are fetched by their names [11]. An ICN con-

sists of routers, where each router has a cache, and edge routers are
connected to users and origin servers. An Interest in ICN encapsu-
lates a request for a content packet by its name. An origin server

is a server that originates contents to be served in the network, thus
fulfilling interests. The contents (data packets) may or may not be
cached in the network. In the rest of this work, we use total Round
Trip Time (RTT) to denote the time from the start of sending the
first interest until the start of receiving a content packet fulfilling it
(also known in the literature as Time to First Byte; TTFB). Simi-
larly, we define RTT per hop. In ICN, contents are forwarded back
to a user on the same path as they are requested by that user, thus
PIT (pending interest table) at each ICN router records which in-
terest is not fulfilled yet. A face in ICN is the port at which data
is sent or received in a router. In our protocols we make use of an

access point (AP), which is the closest connecting point of the user
to the ICN (not to be confused with a wireless access point). Each
router maintains a set of states to record the number of times that
a privacy-sensitive content object has been fetched by each user or
face. pmode is a flag to indicate that the privacy of a content name
being accessed need to be preserved in future access and requests.

2.1 Attack Model
We consider an adversary co-located with an honest user who

tries to access contents from ICN . To this end, we assume that
the adversary has the capability to perform fine-grained time mea-
surements to perform attacks. We also assume that the attacker has
a list of potential “names”, where he wants to verify whether the
benign user has accessed such names or not. We do not assume
any insider attacks, since such names are easy to infer given that
domain-specific names are common among people working in that
domain, and are easy to infer. From this assumption it follows that
the adversary has no control over which path interests are sent, and
cannot be geographically distributed to perform an intersection at-
tacks by combining several measurements at different network lo-
cations (see Section 5). Finally, for the operation of our attack, we
assume that the adversary has enough time to perform the attack,
which implies that the content caching lifetime is long enough that
the adversary would have a cache hit for contents previously cached
by the benign user’s requests.

In this paper we assume that the underlying infrastructure used
by both adversaries and benign users is honest. In particular, a
common router that holds traffic of the adversary and the honest
user cannot collude to perform an attack against the benign user
(e.g., r2 in Figure 1). On the other hand, the adversary, if at the
scale of a subdomain, may control a router where no traffic of the
benign user passes through (e.g., r3 could replace AP2 in Figure 1).
This assumption can be further used by the adversary to enumerate
in real-time what contents are being consumed by other users in his
domain, and to help him improve the inference attack on other users
within proximity but in other domains (see §1 for such scenario).
Finally, the attack discussed in this paper is applicable to CCN, and
to a lesser extent to other proposals [5, 10, 16].

2.2 Design Goals and Privacy Definition
The design goals in this paper is to protect the privacy of the

users fetching contents using the ICN at reasonable cost. We use
the classical definition and meaning of the privacy as “anonymity”:
the adversary should not be able with his reasonable resources (as
assumed in section 2.1) to pinpoint the user fetching such contents
among a finite number of users within his proximity. To end, we
definite the anonymity set of a user fetching the contents as the
number of users at an less than or equal distance from the adver-
sary to that user, who could potentially be fetching that same con-
tents. To this end, we outline the following design goals. (i) Protect

the user privacy: the main design goal in this work is to defend an
adversary from inferring users’ access patterns to contents fetched
and distributed using ICN (details below). The privacy is defined as
anonymity, and increasing the anonymity set of the requested traffic
so that to make the inference as less accurate as possible would suf-
fice the purpose. (ii) Cost effective: the modifications and overhead
for providing privacy to the access pattern of the users should not
represent a great overhead in relation with the operational overhead
of the ICN (used for routing or caching). Furthermore, the protec-
tion mechanisms should not generate an excessive amount of com-
munication overhead (in the form of bits on wire). (iii) Minimal

change to existing ICN protocols: ideally, we want our solutions
not to alter the way caching and routing operate in the ICN.
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3. PROTECTION MECHANISMS
As mentioned earlier, simple solutions cannot prevent the timing

attacks for privacy while they greatly degrade the benefits of ICN
architectures. Also, intelligent caching requires a topology knowl-
edge that is beyond a router’s resources. To this end, we propose
several solutions without requiring such knowledge.

Before going into the details of the protocols, we introduce the
time (delay) generation procedure performed by an edge router, and
takes several parameters based on the specific protocol, and the
number of hops to be added as noise to prevent the timing attack.
For a content name n ∈ N , the total number of hops h, RTT tdx,
and the time delay for the first hop td0, td(n) is chosen as follows
to balance privacy and loss in performance. For a given n, the same
value of td(n) is used for subsequent requests.

td(n) =

{

0 h = 1
2td0 < td(n) < tdx h > 1

(1)

3.1 The “Vanilla” Approach
The vanilla algorithm to prevent timing attacks on privacy in ICN

is described in Algorithm 1. The main ingredient of the algorithm
is a carefully chosen delay added to subsequent responses to make
them similar to the responses that fall back on the origin servers to
ensure that the contents that are sent to an adversary do not expose
timing patterns—such patterns could be used to infer if other users
have requested the same contents. For that, the protocol relies on
states stored by each edge router to name the contents that are of
privacy-value to users, the number of times the contents are being
served to each user, and the user id.

Particularly, for a user u (U1 in Fig. 1), its edge router (r2 in
Fig. 1) maintains ϕ(u, n) : U × N → INT , where U , N , and
INT are the sets of users, content names, and integers, respec-
tively. ϕ(u, n) indicates the number of times that user u has ac-
cessed the content name n. At the beginning, assuming benign
user U1 first generates interest Ints = (U1, n, pmode, ts0) with
pmode = 1, where ts0 is the timestamp of when the interest is is-
sued. When r2 receives this, it follows the ICN protocol [11] to
retrieve a data packet Data from the origin server, and records ts2
upon the arrival of the first packet in response of the interest. Fol-
lowing Eq. 1, r2 computes expected number of hops from the user
U1 to the origin server as h = tdx(N)/(2td0)+1, and then records
tdx along with (U1, n), and updates the ϕ to indicate the times that
the user has accessed the content. r2 then serves the content to U1.
When another interest for n is issued by user U2, who is a potential
attacker, the router r2 acts in response to this interest as follows:
If U2 has previously requested n, r2 responses directly and serves
contents from the cache. Else r2 applies the random delay and re-
turns Data to U2.

3.2 An Efficient Approach
While the vanilla algorithm preserves the privacy of user’s access

history from attackers in the same domain, it consumes significant
resources in edge routers, especially when threats from different
domains are concerned, where each domain may have large number
of users. In order reduce the states stored in each router, a more effi-
cient way is to maintain per-face state instead of per-user ones. The
main observation made here is that interests from different (sub-
)domains traverse different faces at an edge router, while interests
coming from same (sub-)domain would traverse the same face. Ac-
cordingly, per-face states are stored and maintained in each router,
and decisions to preserve privacy are made upon those states. Un-
like Algorithm 1, each router stores ̺ : F×N → INT , where F is
the set of faces. ̺(f, n) indicates the number of times that content

Algorithm 1: The “vanilla” approach to preserving the privacy
of cache access. The description makes use of the toy example
in Figure 1.

Input: n - a content name, u - a user, ϕ - access state,
Ints = (u, n, pmode, ts0)

Output: A data packet to u in a privacy-preserving manner.

When R receives Ints from u, it records ts1, the timestamp of
interest arrival, and computes td0 = ts1 − ts0 as a one-hop
time delay.
if pmode == 0 then

if td(n) == 0 then

// default value td(n) = 0
R follows ICN protocol to obtain data packet Data
from the origin server;
R returns Data to u;

else

R follows ICN protocol to obtain data packet Data;
R delays td(n);
R returns Data to u;

end

else

if ϕ(u, n) == 0 then
R follows the ICN protocol to obtain data packet
Data from the origin server;
R records ts2 upon the arrival of Data, and computes:
tdx = ts2 − ts1; // RTT from R to origin server
h = tdx/(2td0) + 1; // expected # of hops from u

to the origin server
Generate td(n) according to Eq. 1;
ϕ(u, n) + +;

R returns retrieved Data to u;

else

R returns cached Data to u;
end

end

name n is requested from face f . The protocol can be illustrated in
Figure 1, where router r2, for example, keeps track of the faces con-
necting it to other routers and access points (e.g., r3 and r4), and
the times each face has requested content names that have been pre-
viously marked as privacy-related contents. After that, r2 follows
the protocol by adding random delays when fulfilling interests that
could potential thwart the privacy of other users’ access.

3.3 Low Granularity Approach
The main shortcoming of the approach described in §3.2 is that it

does not enable lower granularity of the preserved privacy—which
is especially required when both the adversary and honest users us
the same AP—unlike the protocol described in §3.1. To enable
lower granularity in the protocol described in §3.1, we maintain
several states in the router, which result high overhead that can be
misused, whereas the protocol in §3.2 reduces this overhead at the
cost of reduced granularity. We propose a new algorithm aiming
to maintain the advantage of both protocols, by maintaining and
distributing these states concerning access patterns of individual
users at the APs, located closer to but not controlled by end users.

The main idea of the protocol is to distribute state ϕ(u, n) on
the AP associated with users generating such requests, and to store
the face state ̺(f, n) in the router. Decisions for access privacy
are made at the router with the help of the AP. When the AP re-
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ceives a request from the user, it checks if the user requested the
content before. If not, the pmode value is discarded (to eliminate
possible cheating attack about pmode), and the AP forwards the
request to the router. Otherwise, the AP directly sends the interest
to the router. Upon receiving the interest from a given face, the
router initially looks if the content is in the cache or not. If not,
it retrieves the content from the origin server and serves it to the
requesting user through that face; otherwise, the router checks the
face state ̺(f, n): if it is zero, which implies that no user on that
face has requested the content, the router returns the content after a
delay td(n) expires; otherwise, it looks at the flag generated by the
AP: if it is true, which means that the user has already requested
the content before, the router fulfills the interest immediately; oth-
erwise, the interest is fulfilled after a delay td(n) is expired.

4. RESULTS AND ANALYSIS
To understand the potential of the attack and how our designs

impact the performance, we perform several measurements on the
CCNx prototype [2] in simulated setting. To derive an accurate
representation of real-world timings, we feed the simulator with
topologies and per-hop RTT traces driven from the current Internet
using traceroute [3] to request several websites (origin servers).

4.1 Settings and Timing Data-sets
Our measurements are based on CCNx, an open source system

that implements CCN. CCNx implements both the communication
operations (naming and data conventions) and security operations
(using OpenSSL), for signature generation and verification.

Because no ICN design is deployed yet, we lack real-world traces
of RTTs for real ICN. However, designs like CCN suggest operat-
ing on top of IP, making IP timings relevant for experiments. To
this end, we instrument the CCNx simulator with per-hop round
trip delays when issuing interests from within our campus (con-
nected directly to the Internet backbone) to reach each of the Alexa
top-100 sites [1]. We use traceroute to obtain per-hop RTT delay to
each of these sites—each of these sites is an origin server.

We notice that traceroute has several limitations that prevent di-
rect use of its measurements in our study. First, as the hop count
increases, there is no guarantee to have larger RTT than previous
RTT for smaller hop count. Second, path to origin servers may
change at any time, making two measurements for the same route
greatly different. Last, traceroute provides cumulative RTT as the
hop count increases, but not the per-hop time delay needed in our
study. To address the first issue, we run many traceroute requests
at different times of the day to account for different network con-
ditions (which is the main reason that raises this issue), and record
different readings for a fixed path to the requested site. Then, for
each hop we consider the median RTT among all RTTs given for
that hop. We observe that as we increase the number of measure-
ments of the traceroute for the same site we get ordered set of (me-
dian) readings: the closer to destination the hop count is, the larger
the RTT. To address the second issue of traceroute, we only con-
sider the path that is most popular in the returned traceroute results,
and discard all other paths. Once both issues are addressed, we
compute the per-hop delay RTTi as:

RTTi =

{

RTT t

i −RTT t

i−1 i > 1

RTT t

1 i = 1
,

where RTT t

i is the i-th returned record by traceroute for the given
site. A CDF of the per-hop RTT on the path to each origin server
is shown in Figure 2. Complementary CDF for smaller range of
RTT (RTTi ≤ 1) is shown as a small graph within the CDF in
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Figure 2: An empirical CDF of the per-hop RTT for alexa-100.

Figure 2 (70% of the hops’ RTT in all per-hop measurements are
less 1 ms). Notice that the per-hop RTT are smaller than expected
on the Internet, which might be due to that two hops are in the same
router, same datacenter, or same CDN. However, the results in this
study are less significantly affected by other than the total RTT and
the first hop delay (used for validating the attack).

We feed the per-hop RTT to a dummy CCNx topology corre-
sponding to the toy example in Figure 1 for each of the hop counts
and the per-hop RTT to request these sites. That is, in each case
we control the number of hops between router r2 and r1 in Fig-
ure 1 to correspond to the number of hops returned by traceroute
for the given site. We then add the delay incurred over that hop as
measured by traceroute using the method explained earlier.

Because the hop count to reach different sites varies, we consider
24 sites that had exactly 16 returned valid hops in traceroute to
unify our analysis and discussion in this section. We only limit our
attention to those sites where traceroute returned 16 unmasked hops
and discard timed-out hops, if any. A boxplot of the normalized
per-hop RTT (defined as RTTi/max{RTTk} for 1 ≤ k ≤ h
and h is the hop-count, where RTTi is the i-th hop—notice that
RTT1 = 2td0 in our protocols) for each of the 24 sites is shown in
Figure 3. Finally, we define the RTT up to each hop as the sum of
the per-hop RTT normalized by the total RTT to the origin server.
This is, RTTk is defined as RTT t

k =
∑

k

i=1
RTTi/RTTh, where

RTTh = 2td0 + tdx is the total RTT up to the origin server, and
RTTi is the the i-th hop RTT. Notice that RTT t

k is returned by
traceroute for each k, and can be used immediately in this study. A
plot of the normalized RTT up to the origin server is in Figure 4.

4.2 Results
Attack validation. First, we examine whether an adversary co-
located one-hop away from a legitimate user is able to exploit the
timing attack explained earlier to infer whether some contents are
being retrieved by that user or not. We note that as per the ICN
caching policy in CCN, contents are replicated and cached at each
hop, thus future requests are fulfilled immediately from the closest
router to the user. From Figure 4, we observe that an adversary
who is co-located with the user who has requested these sites ben-
efit from the caching, and would ideally reduce the total RTT for
fulfilling a request by a cache hit at the first hop by around 98%
for the most conservative sites (and more than 99% for the median
site). Even when a cache-miss happens, an RTT by a cache hit at
the sixth hop away from the user, for example, would be 40 times
at average (and about 25 times at worst) less than the RTT when
retrieving contents directly from the origin server—although this
scenario may not breach the privacy of user access patterns since
a 6-hop network has a large anonymity set. By feeding the timing
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Figure 3: The normalized per-hop total RTT for 24 sites.
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Figure 4: The normalized RTT up to the given hop count.

profiles in Figure 3 in CCNx we observe that the network latency
is the dominating part of the RTT in CCN, and other ICN-related
delay is negligible. From that, we conclude that an adversary that
relies only on the timing information can easily and successfully
infer that the contents are being cached in a near-by router due to
their access be a potentially co-located user with him.
How defenses impact the performance. One critical parameter
for our designs is td(n), which corresponds to the number of hops
d that an edge router estimates and according to which he gener-
ates noise and uses it to fulfill pending interests issued by end users
while maintaining privacy of prior requests. This parameter is gen-
erated and used in the three different protocols proposed in this
work. Given that we have access to the per-hop delays (as shown
in §4.1), we use d ≤ h directly to compute td(n) instead of the ap-
proximation in Eq. 1. To understand the impact of different values
of d we define the maintained RTT gain metric as the difference be-
tween the gain in RTT due to caching for subsequent interest fulfill-
ments (when contents are cached 1-hop away from the requesting
host) and the the incurred delay due to the added noise in our pro-
tocols at a given d. This maintained gain is especially significant
to benign users requesting the contents in the future. By observing
that the first hop’s RTT is negligible, we consider the maintained
RTT gain (normalized) as 1 − (td(n)/tdx) ≈ 1 − RTT t

d . We
compute this quantity for the min, max, mean, and median RTT t

d

of the different sites, for different d values.
Even when the router has the capability to record a per-hop RTT

and add a given number of hops as noise—not an estimate as de-
scribed in the protocols, the overhead as additional time delay added
to the RTT of fulfilling requests to users still maintains the benefits
of ICN as shown in Figure 5. For example, when d = 6 (which
is one-third of the hop count to the origin server thus providing
high anonymity set), a request to an average site would be fulfilled
about 40 times faster than retrieving contents from the origin server
(0.975 gain). Even for the site with the longest RTT, it would be
25 times (0.96 gain) faster than getting contents from the origin
server. Even when d increases the results are not affected greatly:
for d = 7, the mean, median, and max gain are 0.965, 0.97, 0.75,
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Figure 5: Maintained RTT gain for varying d values.

respectively. Similarly, for d = 8, we obtain 0.7, 0.633, and 0.62,
respectively. However, as d reaches a value that makes the path
traverse the core congested network with high TTL, this result de-
grades greatly: the performance worsen to reach an average gain of
0.5 at d = 11. As before, RTT is dominated by network latencies,
whereas CCNx delays are negligible, supporting our claim that our
designs maintain ICN’s gain in RTT, and that the performance is
tunable depending on the desirable privacy to provide to users.
How network conditions affect the performance. Both of the
previous sections make conclusions that are network-dependent.
Accordingly, we perform similar requests from another commercial
campus network that is separated from the Internet backbone by
several hops, where several middle boxes are used for security pur-
pose (the average total RTT has increased in these measurements by
300%). In these measurements we observe that the first hop would
at average constitute 1% of the overall RTT, making the attack eas-
ily applicable, and the maintained gain for d = 6 in sites that have
16 returned hops by traceroute is 0.88 at average (8 times faster
than retrieving contents from the origin server). We further make
similar measurements by performing those requests from a residen-
tial network, and find a similar RTT for the first hop, although the
gain for d = 6 for similar set of sites is 0.92 at average.
Overhead evaluation. The overhead depends greatly on how of-
ten contents are flagged for privacy. Since we assume that a user
who uses the pmode with requests is trusted, the overhead is a
good estimate of real privacy needs. Misuses that try to exploit that
and generate excessive overhead on routers can be penalized by
feedbacks from other users. We notice that the last protocol, which
outperforms all others, have limited overhead on routers. Also, we
emphasize that there is no overhead on the network, since the delay
generated would not affect the location of contents in the cache, but
the time at which an interest is fulfilled.

5. DISCUSSION
We assume that the adversary and the benign user are residing

behind the same router, and are 1-hop away from each other. Thus,
if both users are 2-hops away, the adversary will still be able to
infer some information about the co-location of the benign user
who has requested the contents. We address this issue in two ways.
First, given that the first few hops (as shown in Figure 4) have small
RTTs, the adversary must have sensitive measurements capability
at the microsecond level to be able to tell if the user is 2, 3, or
4 hops away with confidence. Second, even in current networks
which have many subscribers to the same routing infrastructure, 2-
hop away users could likely be hidden in a large enough anonymity
set. This makes it hard for the adversary to pinpoint a smaller set
of users who could be potentially the requesters of the contents.
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We also assume that the adversary cannot collude with routers.
However, two users acting as adversaries may collude with each
other and try to bypass our defenses. For example, each of the col-
luding malicious users could issue an interest for a certain content,
and compare their timings to infer whether the content has been
cached or not. We notice that such collusion is only applicable to
the first protocol. In the two latter protocols, requests have to go
through the same face, thus they will be considered as if they are
from the same entity, regardless to the users who issued them.

A final attack is what we coin the “intersection attack”, in which
two geographically distributed attackers collude to infer if a piece
of contents is cached or not. For example two nodes that are 3 hops
away on the path of contents receiving the same time measurements
can infer the manipulation by the router by contradicting their mea-
surements . However, in order for this attack to work, the attackers
need to: 1) be geographically distributed, and 2) know in advance
the path benign requests have traversed. While the first requirement
would violate one of our attacker model assumptions, we believe
that the second requirement would require collusion of the under-
lying infrastructure (routers) or much larger number of attackers to
make a good estimate of the path. Even though the attack is possi-
ble in theory, our defenses and privacy protection mechanisms raise
the bar greatly for the attack in practice.

6. RELATED WORK
Concurrent to our work, [14] pointed out the attack under dif-

ferent caching policies, but falls short in not providing any work-
able solutions to it. Caching has been widely investigated, although
motivated by the performance rather than privacy. Examples of the
prior literature include the work in [8, 13, 15].

Security and privacy in ICN have been discussed in several re-
cent works. In [18], secure naming system has been proposed.
Named-based trust and security protection mechanisms are intro-
duced in [20]. Different naming conventions in ICN architectures
and their security features are discussed in [9]. A privacy-preserving
contents retrieval in ICN (that assumes the origin server is dishon-
est) is proposed in [6]. A diverse array of security mechanisms
for ICN is introduced in [12]. A closely related architecture that
makes accountability as a first-order property, named AIP, is in-
troduced in [4] (which shares similarities with the naming in [7]).
Arguments for ICN and future Internet design in general are in [17].

7. CONCLUSION
We have introduced an attack on content access privacy that is

applicable to several ICN architectures, including the NDN. We
show that an adversary with the capability to perform timing mea-
surements can infer whether contents have been fetched by other
users by exploiting the universal caching mechanism deployed in
such architecture. We verify such attack theoretically and empir-
ically using real-world per-hop time measurements. To withstand
such attack, we introduce three protocols, each of which comes
at varying cost and benefits to the network. In these protocols,
we make use of carefully chosen time delay to responses given by
routers to fulfill requests by users. The delay is chosen to strike a
balance between the amount of privacy provided to users—which is
determined by the delay added to increase a number of virtual hops
away from the user requesting privacy-related contents, the over-
head on routers, and the degradation of service to benign users.
Our future work will include looking into how different caching
polices will affect our attack and countermeasures.
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